Kavayitri Bahinabai Chaudhari NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Third Year Engineering (Mechanical Engineering)

Faculty of Science and Technology

SYLLABUS STRUCTURE Semester – V&VI W.E.F. 2020 – 21

Subject Group	Code and	Subject	Groups
----------------------	----------	---------	--------

Sr.	GROUP	Category	Breakup of
No.			Credits
			(Total 160)
1	А	Humanities and Social Sciences including	10
		Management Courses (HSMC)	
2	В	Basic Science Courses (BSC)	26
3	С	Engineering Science Courses including workshop, drawing, basics of electrical/mechanical/computer etc. (ESC)	26
4	D	Professional Core Courses (PCC)	53
5	E	Professional Elective Courses relevant to chosen specialization/branch (PEC)	18
6	F	Open subjects – Electives from other technical and /or emerging subjects (OEC)	12
7	G	Project work, seminar and internship in industry or appropriate work place/ academic and research institutions in India/abroad (PROJ)	15
8	Н	Mandatory Courses (MC) [Environmental Sciences, Induction program, Indian Constitution, Essence of Indian Traditional Knowledge]	(non-credit)
		Total	160

Kavayatri Bahinabai Chaudhari NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Bachelor of Engineering (Mechanical Engineering)

Faculty of Science and Technology

Syllabus Structure & Contents of Third Year of Engineering

Semester-V

w.e.f. 2020 - 2021

Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon (M.S.)

		Teaching Scheme				Evaluation Scheme					
		reaching Scheme			Theory		Practical				
Name of the Course	Group	Theory Hrs / week	Tutorial Hrs / week	Practical Hrs / week	Total	ISE	ESE	ICA	ESE	Total	Credits
Heat Transfer	D	3			3	40	60			100	3
Manufacturing Processes	D	3			3	40	60			100	3
Strength of Materials	D	3			3	40	60			100	3
Professional Elective Course – I	Ε	3			3	40	60	-	-	100	3
Open Elective Course – I	F	3			3	40	60	-	-	100	3
Heat Transfer Lab	D			2	2			25	25 (PR)	50	1
Manufacturing Processes Lab	D			2	2			25	25 (OR)	50	1
Machine Drawing Lab	D			2	2	-	-	25	25 (OR)	50	1
Minor Project – I (Stage –I)	G			6	6	-	-	50	-	50	3
Constitution of India	Η										0
		15		12	27	200	300	125	75	700	21

Syllabus Structure for Third Year Engineering (Semester – V) (Mechanical Engineering) (w.e.f. 2020 – 21) AICTE

ISE: Internal Sessional Examination

ESE: End Semester Examination

ICA: Internal Continuous Assessment

Professional Elective Course – I	Open Elective Course – I
1) Instrumentation and Control	1) Electronic Devices
2) Process Planning and Tool Design	2) Object Oriented Programming
3) Energy Conservation & Management	3) Introduction to Plastic Engineering
4) Tribology	4) Industrial Safety Engineering

Syllabus Structure for Third Year Engineering (Semester – VI) (Mechanical Engineering) (w.e.f. 2020 – 21) AICTE

Syllabus for Third Year Engineering (Mechanical Engineering) w.e.f. 2020 - 21 AICTE

		Teaching Scheme				Evaluation Scheme					
						Theory		Practical			
Name of the Course	Group	Theory	Tutorial	Practical						Total	Credits
		Hrs /	Hrs /	Hrs /	Total	ISE	ESE	ICA	ESE	Total	
		week	week	week							
Kinematics and Theory of Machines	D	3			3	40	60			100	3
Manufacturing Technology	D	3			3	40	60			100	3
Material Engineering	D	3			3	40	60			100	3
Professional Elective Course – II	Ε	3			3	40	60	-	-	100	3
Open Elective Course – II	F	3			3	40	60	-	-	100	3
Kinematics and Theory of Machines Lab	D			2	2			25	25 (OR)	50	1
Manufacturing Technology Lab	D			2	2			25	25 (OR)	50	1
Material Engineering Lab	D			2	2			25	-	25	1
Minor Project	G			6	6	-	-	50	25 (OR)	75	3
Internship*	H	-	-	-	-	-	-	-	-	-	_
		15		12	27	200	300	125	75	700	21

Kavayitri Bahinabai Chaudhari North Maharashtra University, Jalgaon (M.S.)

ISE: Internal Sessional Examination

ESE: End Semester Examination

ICA: Internal Continuous Assessment

Professional Elective Course – II	Open Elective Course – II
1) Mechanical Transmission Systems	1) Software Engineering
2) Mechanical Estimation and Costing	2) Introduction to Data Structure
3) Internal Combustion Engine	3) Introduction to Micro-Electro-Mechanical Systems (MEMS)
4) Solid Mechanics	4) Piping Engineering

NOTE: * Internship is a mandatory and non-credit course. It shall be during summer vacation after Semester – VI. The satisfactory completion of Internship should be submitted to University at the end of Semester – VIII.

	HEAT TRANSFER									
9										
Course	HEAT	TRANSFE	K		Short	HT	Cour	se		
Title: Code:										
	iescripi	<u>10n:</u>	1	1		<u> </u>	1	1	• 1	
This cou	rse intr	oduces under	rgradua	ate students to	Heat Irans	ster. The t	backgrour	nd red	quired	
Thormood		knowledge of	Jacha	ematics (Calcul	us), Enginee	The course		cs, A	ppned	
knowlodd	ynanne moof U	s alla Fiula I	nd mo	dos of Host Tra	year Level.	The cours	e anns a	t imp	arting	
KIIOwieug			nu mo	No of						
Lectu	ire	Hours/we	eek	weeks	Total	hours	Semes	ter cr	edits	
Lett	ne	03		14	4	2		3		
Preregui	isite coi	irse(s).				_		-		
Mathema	tics (Ca	alculus) at firs	st vear	level and Engi	neering					
Thermod	vnamic	s. Applied Th	ermod	vnamics and F	uid Mechan	ics at Seco	nd Year I	.evel.		
Course o	biectiv	es:		J						
(1) The a	im of th	e course is to	build	a solid foundat	ion in heat t	ansfer exp	osing stu	dents	to the	
three bas	ic mode	s namely con	ductio	n, convection a	nd radiation	1	U			
(2) Rigor	ous trea	tment of gov	erning	equations and	solution proc	cedures for	the three	mode	es	
will be p	rovided	, along with s	olution	of practical pr	oblems usin	g empirica	l correlati	ons.		
(3) The c	ourse v	vill also brief	ly cove	er boiling and o	condensation	heat trans	fer, and t	he an	alysis	
and desig	n of he	at exchangers		-					-	
Course o	outcom	es:								
Upon Su	ccessful	completion of	of this	course, student	s will be able	e to:				
1. formul	ate and	analyze the s	teady s	state heat transf	er in conduc	tion				
2. design	, analyz	e and interpre	et the d	ata for fins and	transient he	at conduct	ion			
3. obtain	exact s	olution by an	nalysin	g the correlation	on for natura	and force	e convect	ion i	n heat	
transfer n	nodel									
4. apply l	cnowled	lge of radiation	on law,	analyze proble	ms and find	shape facto	or for vari	ous b	odies.	
5. design	, analyz	e, performan	ce eval	uation of heat	exchanger.					
НЕАТ Т	DANS	FFD		COURSE COI	NIENI		T	7		
Teaching		112N 10.		Fyami	nation scho	me	v			
Locturos	s benen	3 hour	relavoo	k End co	mostor over			60 m	orka	
Lectures	•	5 1100	15/ WEE	K Eliu se	on of FSF.	II (ESE).		00 II		
	Duration of ESE: 03 hours									
Internal Sessional Exams (ISE): 40 marks										
Unit L. No. of Lootunes: 00 Hours Monkey 12										
Steady S	tate Co	nductivo Ho	11U. at trar	of Lettures: V		N	1a1 NS; 12	-		
Concepts	and M	echanism of l	neat flo	w Steady and	unsteady et	nte heat tra	nsfer Mo	des o	of heat	
transfer	their nh	vsical mecha	nism	. Steady and	unsteady sta	ue near tra	10101, 1010		'i neat	
transfer, their physical mechanism.										

Laws of heat transfer, thermal conductivity, heat transfer coefficient, radiation heat transfer coefficient. Isotropic and an-isotropic materials, Insulation materials, Thermal resistance and thermal conductance.

One dimensional heat conduction Boundary conditions, Steady state heat conduction without heat generation in plane wall, cylinder and sphere, Thermal contact resistance, critical thickness of insulation on cylindrical bodies.

	1								
Unit–II:	No. of Lectures: 09 Hours	Marks: 12							
Steady and Unsteady State C	Steady and Unsteady State Conductive Heat transfer:								
One dimension Steady state h	eat conduction with heat gene	ration in plane wall, cylinder and							
sphere									
Heat transfer from extended s	urface.: Types of fins, governir	ng equation for pin fin for infinite							
long fin and fin with negligit	ble heat loss, Fin performance,	fin efficiency, fin effectiveness,							
overall fin effectiveness	-	-							
Unsteady state heat conduction	n, Introduction to lumped system	n approximation and Biot number.							
Importance and use of Heissle	r charts.								
Unit–III:	No. of Lectures: 08 Hours	Marks: 12							
Convection Heat Transfer:									
Natural and forced convection	: Dimensional analysis: Therma	al boundary layer.							
Convection boundary layers: la	aminar turbulent Laminar flow	over bodies turbulent flow inside							
circular and non- circular due	ts Reynolds Colburn analogy	for flow over flat plate and flow							
inside tube		for now over nut plute and now							
Heat transfer in fully develope	ed flow Natural convection over	r vertical planes use of empirical							
correlation for convection		a verticul planes, use of empiricul							
Principle of condensation and l	hoiling Pool hoiling curve (No i	numerical treatment) Introduction							
mass transfer Similarity betw	een heat and mass transfer (No	numerical treatment)							
mass transfer, similarly betwe	con nour and muss transfer (110	numerieur treatment).							
Unit IV.	No. of Locturos: 08 Hours	Market 12							
Dadiation Heat Transform	no. of Lectures. of fiburs	Wiai KS: 12							
Thermal rediction: Concept 1	Plack body radiation Spactral	and total amissiva power Stafan							
Roltzmann law Padiation lay	ve Irrediction and rediccity S	urface absorption reflection and							
transmission emissivity	ws. Intadiation and radiosity, 5	unace absorption, reflection and							
Padiation view factor Propert	ies of view factor (numerical tr	estment on view factor on square							
cavity triangular cavity here	vispharical cavity concentric of	wlinder and sphere only)							
Padiation hast exchange betw	een two diffuse gray parallel su	rface radiation shields							
Radiation heat exchange betw	een two unfuse gray paranel su	frace, radiation sineras.							
Unit V.	No. of Locturos: 08 Hours	Market 12							
Hoot Exchangers:	No. of Lectures. 08 Hours								
Classification of boat and	angara tamparatura distribu	tion in perallel counter flow							
Classification of neat exchangers, temperature distribution in parallel, counter flow									
Log-mean temperature difference method and NTU affectiveness method of analysis for rating									
and sizing of heat exchangers									
and sizing of near exchangers.									
and Evaporators	of good near exchanger, Design	aspects of Condensers, Redoners							
and Evaporators.									

Text Books:

- 1. J. P. Holman, "Heat Transfer" McGraw Hill, VII Edition.
- 2. P. Kothandaraman, "Fundamentals of Heat and Mass Transfer".
- 3. R. K. Rajput, "Heat and Mass Transfer", S. Chand & Company Ltd., New Delhi.
- 4. D. S. Kumar "Heat and Mass Transfer" D.S. Kumar, S. K. Kataria & Sons, Delhi.
- 5. P. K. Nag "Heat Transfer" Tata McGraw Hill Publishing Company Ltd., New Delhi.

6. Sachdeva R.C., "Fundamentals of Heat and Mass Transfer" Wiley Eastern Limited, Third Edition.

7. Sukhatme S.P, "A Text Book on Heat Transfer" (1989), 3rd Edition, Orient Longmans Ltd., New Delhi.

8. Arora S.C. & Domkundwar S., "A Course in Heat and Mass Transfer" (1994), Dhanpat Rai & Sons, IVth Edition.

9. Chapman A.J., "Heat Transfer" (1989), IVth Edition.

10. Yunus A. Cengel, "Heat Transfer – A Practical Approach" (Tata McGraw Hill)

11. M. M. Rathore "Engineering Heat and Mass Transfer", 2nd Edition, Laxmi Publications, New Delhi.

12. M. Thirumalseshwar,"Fundamentals of Heat and Mass Transfer" Pearson Education.

13. R. Rudramoorthy, K. Mayilsomy, "Heat Transfer", Pearson Education.

Reference Books:

1. Bejan, A., A. D. Kraus, Heat Transfer Handbook, John Wiley (2003).

2. W. J. McCabe, J. Smith, P. Harriot, Unit Operations of Chemical Engineering, Sixth Edition, McGraw Hill (2005).

3. Holman, J. P., S. Bhattacharya, Heat Transfer, 10th Ed., Tata McGraw-Hill (2011).

4. D. Q. Kern, Process Heat Transfer, Tata-McGraw Hill (1997).

5. R. Welty, C. E. Wicks, R. E. Wilson, G. Rorrer, "Fundamentals of Momentum, Heat and Mass Transfer", 4th Ed., Wiley (2007).

6. F.P.Incropera, and D.P. Dewitt, "Fundamentals of Heat and Mass Transfer", John Wiley, Sixth Edition, 2007.

7. Massoud Kaviany, "Principles of Heat Transfer", John Wiley, 2002

8. Yunus A Cengel, "Heat Transfer : A Practical Approach", McGraw Hill, 2002

	MANUFACTURING PROCESSES								
COURSE OUTLINE									
Course	Manufa	cturing Processes Short MP Course							e
Title:						Title:		Code:	
Course o	lescriptio	on:							m 1
This cour	rse is desig	gned to	o introduce s	students	with differen	nt manuf · ·	acturing pro	ocesses.	The course
will help	students	under	stand the m	anufactu	iring and joi	ining pro	cesses and	their aj	oplications
Students	will be at	ole to s	olve the pro	blems re	lated to load	i design i	for forming	process	and poring
ume in o	tools such	ocesse	bo mochino	III de la	manipa an	d planar	machina	nning p	rocess and
machine	tools such	I as la Ho	urs/week	No	of weeks	Tota	hours	Semes	ter credit
Lect	ture	110	03	110.	14	100	42	Series	3
Prerequi	isite cour	se(s).	05		11		12		5
Worksho	n practice	$\sim Phys$	ics						
Course of	hiectives	, 1 11 y :: 							
To motiv	vate and cl	nallen	ve students	to under	stand and de	evelop ar	appreciati	on of th	e processe
in correl	ation wit	h mate	erial proper	ties whi	ch change	the shar	e. size and	1 form	of the ray
materials	into the c	lesirat	ole product h	ov conve	ntional or u	nconven	tional manu	facturin	g methods
			1	5					0
Course of	outcomes	:							
Upon Su	ccessful c	omple	tion of this	course, s	students will	l be able	to understa	nd:	
1. Under	stand me	tal cas	ting proces	s, calcul	ate pouring	time, e	lements of	gating s	system and
defects in	n it.								-
2. Under	stand prin	ciple of	of metal for	ming and	l working of	f various	metal form	ning pro	cesses.
3. Under	stand mea	ning,	use of weld	ing, tech	niques and t	types of a	it.		
4. Under	stand wor	king o	f machines	used in 1	nanufacturii	ng and th	neir use.		
5. Under	stand proc	cess of	powder me	etallurgy	, use and pro	operties	of products.		
				GOUDO					
	· • •			COURS	E CONTER	NT	X 7		
Manufa	cturing P	rocess	es		Semester:		V		
Teaching	g Scheme	:			Examinati	ion sche	me		
Lectures	5:		3 hours/we	ek	End semes	ster exa	m (ESE):		60 marks
					Duration	of ESE:			03 hours
					Internal S	essional	Exams (IS	SE):	40 marks
Unit–I: No. of Lectures: 09 Hours Marks: 12									
Metal Casting Process: Casting and moulding: Casting, Patterns; types, material and design									
including pattern allowances; Moulding sands; composition, preparation, properties and testing;									
Core; Purpose, definition, materials, preparation and applications; Gating system; elements of									
gating system, characteristics, Classification, Estimation of pouring time for top gate and bottom									
gate type	e moulds	. Heat	transfer a	nd Solic	intication, In	nspectio	n of castin	g, Spec	ial casting
processes	s, Detects	in cas	sting proces	ses. Des	ign of gating	g system	i; pouring b	asın, sp	rue, runne
and risers; Advantages.									

		1							
Unit–II:	No. of Lectures: 09 Hours	Marks: 12							
Metal Forming Processes: T	Theoretical basis for metal form	ning process, Advantages and							
disadvantages of metal forming	g, Classification of metal forming	ng, Effect of variables on metal							
forming, forging; Classification, considerations for sound forging, forging defects, rolling; Hot									
and cold rolling, Mechanism of	rolling, Analysis of rolling proce	ess, Types of rolling mill, rolling							
defects, Drawing; Wire, Rod	and Tube. Extrusion; types	of extrusion, Advantages and							
disadvantages.									
Unit–III:	No. of Lectures: 08 Hours	Marks: 12							
Welding/ Joining Process:	Welding: Definition. Advantage	es. Limitations. Applications.							
Classification of welding proce	ess. Gas welding processes, type	s of flame. Torch angle. Factors							
influencing torch angle, weldi	ng techniques in gas welding, u	se of filler rod and fluxes. Arc							
welding operation. Design of w	eld bead. Electrode. designation	of electrode. Crowning. Spatter.							
Magnetic arc blow. TIG wel	ding. MIG welding. Soldering	Brazing and Braze welding							
operation. Thermit welding, El	ectro-slag welding. Defects in w	elding.							
Unit_IV.	No. of Lectures: 08 Hours	Marks: 12							
Machining: Lathe machine: P	arts of lathe machines (Tail stor	ck Head stock Carriage Bed)							
Operations on lathe (Plain tu	rning Taper turning Thread c	utting Chamfering Knurling)							
Shapers and Planners: Introduce	ction Shaper machine cutting t	cools used in shaping Planning							
machine Principal of working	Milling Process: Introduction	Basic Milling process types of							
milling process: peripheral mi	lling Face milling End Milling	Milling machines Grinding:							
Introduction Specification of a	rinding wheel Glazing	g, winning machines. Ormening,							
introduction, specification of g	inding wheel, Oldzing.								
Init_V•	No of Lectures: 08 Hours	Market 12							
Powder Metallurgy: Introduct	ion Advantages and limitations	of P/M Manufacturing of metal							
powders Mixing and blending	Compaction Sintering Second	ary operations Recent trends in							
powders, winning and biending,	of powder metallurgy parts. Com	parison of P/M parts with other							
processes	or powder metanurgy parts, con	iparison of 1714 parts with other							
Toxt Books.									
1 Dr. P. C. Sharma Production	Technology (Manufacturing Pr	ocassas) S Chand & Company							
I. DI. I. C. Shaima, Hoduction	r reenhology (Wanutacturing r	ocesses), S. Chand & Company							
2 Dr. D.C. Sharma Droduction	Engineering S. Chand & Com	nony I td							
2. DI. F. C. Shailia, Flocuction	mun Mittel Manufacturing Pro-	pany Ltu.							
5. H. N. Gupta, K. C. Gupta, F	Alun Minual, Manufacturing Proc	cesses, , new Age international							
A Kalaakiian and Saharid Ma	ante turin a nue concer for an air	and the second							
4. Kaipakjian and Schmid, Ma	anulacturing processes for engin	ieering materials, (5th Edition)							
Pearson India, 2014.		I I W'I I C I							
5. Mikell P. Groover, Fundame	entais of modern manufacturing,	John Wiley and Sons, Inc.							
6. Degarmo, Black & Kohser, I	Materials and Processes in Manu	facturing							
Keierence Books:									
1. K. K. Jain, Production Techn	nology, Khanna Publishers.								
2. P. N. Rao, Manufacturing teo	chnology, Vol-I & II McGraw H	ill publications							
3. Hajara Choudhari, Bose S.K	Elements of Workshop Technol	ogy Volume I & II							

Г

- 4. H. S. Shah, Manufacturing process Vol-I, Pearson New Delhi.
- 5. Serope Kalpakjian, Manufacturing Processes, Pearson New Delhi.
- 6. Amitabha Ghosh, Asok Kumar Mallik, Manufacturing Science, Pearson, India.

STRENGTH OF MATERIALS

	COURSE OUTLINE									
Course	Strength of Materials		Short	SOM	Course					
Title:			Title:		Code:					
a .										

Course description:

The course is designed to understand the basic concepts of stress, strain and their variations due to different type of loading. The concept of Mechanical properties, Poisson's ratio, bulk modulus, elastic modulus, modulus of rigidity, combined stress and strain, principal stress, principal plane, bending moment and shear force in beam under various loading conditions.

It focuses on the concepts of bending stresses and shear stresses in beams. Understanding of torsional shear stress in solid and hollow shaft; principal and maximum shear stress in a circular shaft subjected to combined stresses.

Lecture	Hours/week	No. of weeks	Total hours	Semester credits
	03	14	42	3

Prerequisite course(s): Mathematics (Calculus) and Engineering Mechanics

Course objectives:

1. To understand the nature of stresses developed in simple geometries such as bars, cantilevers, beams, shafts, cylinders and spheres for various types of simple loads.

2. To calculate the elastic deformation occurring in various simple geometries for different types of loading.

Course outcomes:

After successful completion of this course the student will be able to:

1. Recognize various types loads applied on machine components of simple geometry and understand the nature of internal stresses that will develop within the components

2. Evaluate principal stresses, strains and apply the concept for design and Draw the SFD and BMD for different types of loads and support conditions

3. Determine the stresses and strains in the members subjected bending and Evaluate the slope and deflection of beams subjected to loads

4. Determine the stresses and strains in the members subjected to torsional loads.

5. Determine the stresses and strains in the pressure vessels due to intensity of pressure

COURSE CONTENT									
Strength of Materials	Semester: V								
Teaching Scheme:	Examination scheme								
Lectures:	3 hours/week		End semester exam (ESE):60 marks						
			Duration of ESE: 03 hou			03 hours			
			Internal Sessiona	l Exams	(ISE):	40 marks			
Unit–I: No. of Lectures: 09 Hours Marks: 12					:: 12				
Deformation in solids- Hooke's law, stress and strain, tension, compression and shear Stresses,									
elastic constants and the	ir relatio	ns, volumetr	ric, linear and shear	strains, ba	ars with	cross-sections			

varying in steps, bars subjected to varying loads, indeterminate structural problems, compound bars.

Unit–II:	No. of Lectures: 09 Hours	Marks: 12						
Principal stresses and principal	planes, Mohr's circle. Beams an	nd type's transverse loading on						
beams, shear force and bend mo	ment diagrams, Types of beam	supports, simply supported and						
over-hanging beams, cantilevers								
Unit–III:	No. of Lectures: 08 Hours	Marks: 12						
Theory of bending of beams, ben	ding stress distribution and neutr	al axis, shear stress distribution,						
point and distributed loads. Defl	ection of a beam using double ir	ntegration method, computation						
of slopes and deflection in beam	s, Maxwell's reciprocal theorems	5.						
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12						
Torsion, stresses and deformation	n in circular and hollow shafts, ste	epped shafts, deflection of shafts						
fixed at both ends, stresses and d	eflection of helical springs.							
Unit–V:	No. of Lectures: 08 Hours	Marks: 12						
Unit–V: Axial and hoop stresses in cylind	No. of Lectures: 08 Hours lers subjected to internal pressure	Marks: 12 e, deformation of thick and thin						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre	Marks: 12 e, deformation of thick and thin essure.						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre	Marks: 12 e, deformation of thick and thin essure.						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books:	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre	Marks: 12 e, deformation of thick and thin essure.						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of I	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre Materials, Dhanpat Rai & Co. (p)	Marks: 12 e, deformation of thick and thin essure.						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of I 2. R. Subramanian, Strength of M	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Pres	Marks: 12 e, deformation of thick and thin essure.) Ltd. New Delhi, 2001. es, 2007.						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of I 2. R. Subramanian, Strength of M 3. Ferdinand P. Been, Russel J	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Press ohnson Jr and John J. Dewole,	Marks: 12 e, deformation of thick and thin essure. 0 Ltd. New Delhi, 2001. as, 2007. Mechanics of Materials, Tata						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of I 2. R. Subramanian, Strength of M 3. Ferdinand P. Been, Russel J McGraw Hill Publishing Co. Ltd	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre- Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Press ohnson Jr and John J. Dewole, I., New Delhi 2005.	Marks: 12 e, deformation of thick and thin essure. 0 Ltd. New Delhi, 2001. as, 2007. Mechanics of Materials, Tata						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of I 2. R. Subramanian, Strength of M 3. Ferdinand P. Been, Russel J McGraw Hill Publishing Co. Ltd	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Pres ohnson Jr and John J. Dewole, l., New Delhi 2005.	Marks: 12 e, deformation of thick and thin essure.) Ltd. New Delhi, 2001. (5, 2007. Mechanics of Materials, Tata						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of I 2. R. Subramanian, Strength of M 3. Ferdinand P. Been, Russel J McGraw Hill Publishing Co. Ltd Reference Books:	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Pres ohnson Jr and John J. Dewole, I., New Delhi 2005.	Marks: 12 e, deformation of thick and thin essure. 0 Ltd. New Delhi, 2001. as, 2007. Mechanics of Materials, Tata						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of M 2. R. Subramanian, Strength of M 3. Ferdinand P. Been, Russel J McGraw Hill Publishing Co. Ltd Reference Books: 1. Pytel A H and Singer F L, "St	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre- Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Press ohnson Jr and John J. Dewole, I., New Delhi 2005.	Marks: 12 e, deformation of thick and thin essure. 0 Ltd. New Delhi, 2001. 5s, 2007. Mechanics of Materials, Tata						
Unit–V: Axial and hoop stresses in cylind cylinders, deformation in spheric Text Books: 1. S. Ramamruthan, Strength of J 2. R. Subramanian, Strength of J 3. Ferdinand P. Been, Russel J McGraw Hill Publishing Co. Ltd Reference Books: 1. Pytel A H and Singer F L, "St 2. Beer P F and Johston (Jr) E R,	No. of Lectures: 08 Hours ders subjected to internal pressure cal shells subjected to internal pre- Materials, Dhanpat Rai & Co. (p) Materials, Oxford University Press ohnson Jr and John J. Dewole, l., New Delhi 2005.	Marks: 12 e, deformation of thick and thin essure.) Ltd. New Delhi, 2001. (55, 2007. Mechanics of Materials, Tata lins, New Delhi. ersion, McGraw Hill, NY.						

4. Timoshenko S P and Young D H, "Elements of Strength of Materials", East West Press, New Delhi.

5. Shames, I. H., Pitarresi, J. M., "Introduction to Solid Mechanics," Prentice-Hall, NJ.

6. NPTEL courses, http://nptel.iitm.ac.in/courses.php, web and video courses on Strength of Materials by Prof. Sharma, S. C., and Prof. Harsha, S. P.

	INSTRUMENTATION AND CONTROL							
			COUDO					
Course	T	antation and	Control	E OUTLIN	NE Shart	IC	Course	
Course	Instrum	entation and	Control		Snort	IC	Course	
Title:					1 lue:		Code:	
Course o	iescriptio	on:		1. 1 1	:			
transducers used to measure temperature, pressure flow & level. Topics will include: operating								
transducers used to measure temperature, pressure, flow & level. Topics will include: operating								
theory of	principal	i industriai pr	ocess sensors	; instrumer	it callora	uion and in	Istallatio	n practices
With indu	istrial app	fications as w	orking exam	ples in a mo	bdern au	tomated co	ntrol syst	em.
Lecture		Hours/week	No. of	weeks	Total	nours	Semest	ter credits
		3		14		42		3
Prerequ	isite cour	se(s):						
Electrica	l drives a	nd Controls, F	Physics,					
Course of	objectives	:						
1. T	'o provide	basic knowle	dge about me	easurement	systems	and their c	omponer	its.
2. T	'o learn ab	out various s	ensors, use fo	r measuren	nent of n	nechanical of	quantities	5.
3. T	'o learn ab	out systems s	tability and c	ontrol.				
4. T	o integra	te the measur	rement system	ns with the	e proces	s for proce	ess moni	toring and
C	ontrol.							
Course of	outcomes	:						
After suc	cessful co	ompletion of t	his course the	e student wi	ill be abl	e to:		
1. Under	stand the	measurement	of various qu	antities usi	ng instru	ments, thei	r accurac	ey and
range, an	d the tech	iniques for co	ntrolling devi	ces automa	tically.			
2. Descri	be a give	n instruments	basic theory	of operation	n and its	inherent ca	pabilities	s and
limitation	ns.							
3. Select	an instrui	nent based on	his knowled	ge of basic	applicat	ions.		
4. Interp	ret measur	rement data p	roperly, supp	orted by his	s develop	bed apprecia	ation for	a given
instrume	nts accura	cy, precision	and operating	g limits.				
5. Define	e certain te	erms used in t	he calibration	of instrum	entation			
			COUDS		NT			
Instrum	ontotion	and Control	COURSI	Someste	N I m	N/		
Taaahin				Enerin	1. 	•		
Teaching	g Scheme	21	· / 1-	Examina	ation sci	neme	- T.	<u>()</u>
Lectures	S:	3 hours	s/week	End sen	lester ex	am (ESE)		bu marks
				Duratio	n of ESI	1: 		03 hours
Internal Sessional Exams (ISE): 40 marks								
Unit-I:No. of Lectures: 09 HoursMarks: 12								
Introduc	ction to N	Aeasurement	Systems : I	ntroduction	, Monito	oring and c	ontrol of	processes
and operation	ations, Ex	perimental en	gineering ana	Iysis, Func	tional ele	ements of a	n instrum	ent, active
and pass	ive transd	ucers, analog	and digital n	nodes of op	erations,	, Null and o	deflection	n methods,
input-out	put config	gurations, me	thods of corre	ction				

Unit–II:	No. of Lectures: 09 Hours	Marks: 12					
Performance Characteristics	of Measurement systems: sys	tems, Instrumentation systems,					
Sensors, signal processors, data	a presentation, accuracy and error	r, hysteresis error, non-linearity					
error, insertion error, Range,	Precision, Repeatability, reprod	ucibility, Sensitivity, Stability,					
Dynamic characteristics, respon	nse, rise and setting time, Reliabi	ility, Calibration					
Unit–III:	No. of Lectures: 08 Hours	Marks: 12					
Sensors for common Enginee	ring measurements: Displacem	ent sensors – Potentiometers,					
Strain gauges, Capacitive elements, LVDT, Optical encoders, Proximity sensors							
Speed Sensors – Tachogenerators, Diaphragm sensors, Piezoelectric sensors,							
Fluid Flow Sensors - Orifice pl	ate, Rotameter, Turbine meter,						
Liquid level Sensors - Ultrason	nic liquid gauge, Lad cell						
Temperature sensors – Bime	etallic strips, Resistance tempe	erature detectors, Thermisters,					
Thermocouples, Pyrometers,							
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12					
Control system: Introduction,	history of automatic control, ba	asic elements, open and closed					
loop systems, use of feedback	in Control system, – Transfer fu	unction: Block diagram, control					
method, selection of control me	ethod, P, PI, PID, tuning of contr	ollers					
Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Control system design & App	lications: Control system design	process, Design Examples such					
as Turntable Speed Control,	Insulin Delivery Control Syste	em, Disk Drive Read System,					
Examples of modern control sy	ystems, Automatic assembly and	l Robots, Mechatronic systems,					
The Future Evolution of Control	ol Systems						
Text Books:							
1. Ernest O. Doeblin (2004), N	leasurement Systems: Application	on and Design, 5 th Edition, Tata					
McGraw-Hill.							
2. Katsuniko Ogata (2010), Mo	dern Control Engineering, 5 th Ec	lition, Prentice Hall of India					
Pvt. Ltd.	Maaaaa ah Cantaal Ea	incoming Mathematican Deals					
3. D S Kumar, Mechanical	Measurements and Control En	igineering, Metropolitan Book					
Company PVI. Limited	n and Control DIII learning						
4. Patranadis D, Instrumentatio	n and Control, PHI learning.	-					
5. Arun K Gnosh, Introduction	i to control systems, PHI learning	J. V. Vataria & Sama					
6. K K Rajput, Mechanical Me	asurements α instrumentation, S	. K. Kalaria & Sons.					
Reference Books:							
1. R. Munasinghe, Classical Co	ontrol Systems: Design and Imple	ementation, Alpha Science					
2. J.P. Holman (2004), Experim	nental Methods for Engineers, Ta	ata McGraw-Hill.					
3. Williams Bolton (2004), Inst	rumentation and control, Elsevie	er Ltd.					
4. Kevin James (2000), PC Int	ertacing and Data Acquisition: T	echniques for Measurement,					
Instrumentation and Control, N	ewnes Publishers.						

	OOL DLOIGH	IG AND IOOL	55 PLAN	PROCE		
COURSE OUTLINE	VE	E OUTLINE	COU			
CourseProcess Planning and Tool DesignShortPPTDCourse	Short PPTD Co	esign Sho	g and Too	cess Plannir	e Pro	
Title: Code:	Title: Co	Title				
Course description:				o n:	e descriptio	
Tools are as basic component for any machining process. The quality and efficiency of an	ess. The quality and eff	ining process. T	for any ma	c component	are as basic	
machining operation basically depends upon quality of tools which in turn depends upon the	machining operation basically depends upon quality of tools which in turn depends upon the					
proper shape, size and material of the tools. Productivity and quality of machining operation	y and quality of machin	Productivity and	of the too	and materia	shape, size	
may further be enhanced by proper and quick mounting of tools and jobs on machines. Jigs an	of tools and jobs on mac	mounting of too	per and qu	hanced by pro	rther be enl	
fixture play an import roll in this process. Therefore, this course attempts to develop abilities i	course attempts to deve	refore, this cour	is process.	port roll in th	play an imp	
students to select a tool of proper size and shape for required machining operation. The desig	uired machining operation	ape for required	er size and	a tool of prop	s to select a	
of cutting tools, jigs and fixtures are also dealt with in this course. This course is therefore a co	s course. This course is the	with in this cour	s are also d	gs and fixture	ng tools, jig	
course for mechanical engineers.			S.	ical engineer	for mechan	
Lecture Hours/week No. of weeks Total hours Semester credit	Total hours Ser	weeks Tota	K NO.	Hours/wee	e	
03 14 42 3	42	14		03		
Prerequisite course(s):				rse(s):	uisite cour	
Manufacturing processes, Workshop Practice			kshop Pract	ocesses, Worl	acturing pro	
Course objectives:				s:	e objectives	
i. To introduce process planning concepts			g concepts	ocess plannin	troduce pro	
ii. To aware about cutting tool standards			standards	cutting tool	ware about	
iii. To introduce design and operations of jigs, fixtures & press design	z press design	, fixtures & press	erations of	esign and ope	introduce d	
Course outcomes:				:	e outcomes	
After successful completion of this course the student will be able to:	ill be able to:	student will be	this course	ompletion of	uccessful co	
1. Understand methods of process planning and interpret manufacturing drawing.	manufacturing drawing	nd interpret manu	ess plannin	thods of proc	erstand met	
2. Calculate process parameters for various machining processes.	rocesses.	achining process	for variou	ss parameters	ulate proce	
3. Select proper tool for given manufacturing operation		operation	nanufactur	ol for given i	ct proper to	
4. Select and design jig and fixture for given simple component.	ponent.	simple componer	ure for giv	gn jig and fix	ct and desig	
5. Classify and explain various press tools and press tools operations.	s operations.	d press tools ope	press tools	plain various	sify and exp	
COURSE CONTENT	NT	E CONTENT	COU			
Process Planning and Tool Design Semester: V	: V	Semester:	ol Design	ning and To	ocess Plan	
Teaching Scheme: Examination scheme	tion scheme	Examination s		e:	ing Scheme	
Lectures:3 hours/weekEnd semester exam (ESE):60 marks	ester exam (ESE):	End semester	s/week	3 hour	es:	
Duration of ESE: 03 hours	of ESE:	Duration of E				
Internal Sessional Exams (ISE): 40 marks	Sessional Exams (ISE):	Internal Sessio				
Unit–I: No. of Lectures: 08 Hours Marks: 12	ours Mark	ures: 08 Hours	No. of L	•	∐nit_I	
Introduction of Process Planning- methods of process planning, 1. Manual Process planning	anning, 1. Manual Proce	process plannin	g- method	ocess Plannir	iction of Pr	
Computer Aided Process planning (CAPP) a. Retrieval CAPP system b. Generative CAP						
system, drawing interpretation, material evaluation, steps in process selection, production						
equipment and tooling selection.	1 1	, r ~	i.	oling selection	nent and too	
				<u> </u>		
Unit–II: No. of Lectures: 08 Hours Marks: 12	ours Mark	ures: 08 Hours	No. of L	[:	Unit–Il	

Syllabus for Third Year Engineering (Mechanical Engineering) w.e.f. 2020 - 21 AICTE

Process planning activities- process parameter calculation for various production processes, selection of jigs and fixtures, selection of quality assurance methods, documents for process planning, economics of process planning, case studies.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12				
Cutting tool standards and mate	erials; Economic of cutting tools	; Design of Single point cutting				
tool; Form tool; Design of circular & tangential form tools, drills, reamers, milling cutters and						
Broaches.						

Locating and clamping principles; Degree of freedom; Fool proofing and ejecting; Locating & Clamping devices; Concept, meaning, differences and benefits of jigs and fixtures; Types, sketches with nomenclature, working and applications of jigs; Types, sketches with nomenclature, working and applications of fixtures; Steps to design jigs and fixture; Design jig and fixture for given simple component.

Unit–V:	No. of Lectures:	Marks: 12				
Press working processes-type	s, sketches and a	pplications;	Press	tools:	types,	working,
components and their functions;	Concept, meaning,	definitions a	nd calc	ulations	s of pres	s tonnage
and shut height of press tool, Shear action in die cutting operation, Centre of pressure; Die						
clearance; Cutting force; Shear	angle; Scrap strip l	layout; Cutti	ng dies	-types	and app	lications;
Design of progressive cutting d	ie, Design of drawin	ng die.				

Text Books:

1. Process, Planning and Cost Estimation By R. Kesava, C. Elanchezhian and B. Vijaya Ramnath, 2nd ed. New Age International 2018.

- 2. Process Planning and Cost Estimation by Panneerselvam R., Prentice-Hall of India Pvt. Ltd.
- 3. Machine Tool Engineering by Nagpal, Khanna Publishers.
- 4. Press Tool Design by P H Joshi, Tata Mc Graw Hill
- 5. Jigs & Fixtures by P H Joshi, Tata Mc Graw Hill

Reference Books:

Peter Scalon, Process Planning, Design/ Manufacture Interface, Elsevier Sci. &Tech. 2002.
 Ostwaal P.F. and Munez J., Manufacturing Processes and Systems, 9th Ed, John Wiley 1998

3. Chitale A.V. and Gupta R.C., Product Design and Manufacturing, Prentice Hall.

4. Tool Design, Donaldson, Mc Graw Hill

ENERGY	CONSERVATION AND MANAGEMENT
--------	-----------------------------

	COURSE OUTLINE							
Course Title:	Energy Conservation and Management	Short Title:	ECM	Course Code:				
Course	Course description:							

Compare and contrast energy management practices and opportunities, including monitoring. Describe and analysis energy efficiency tools. Describe key issues in energy resource management and green building. Discuss and discern the history of energy sources and the conservation of and future of resources needed to maintain our economy. Describe and discuss a variety of world and regional energy policies. Communicate reasons for environmental protection and renewable energy implementation. Explain energy accounting and analysis and how it is used in energy assessment. Demonstrate understanding of rate of return and life cycle cost analysis

Lecture	Hours/week	No. of weeks	Total hours	Semester credits	
	03	14	42	03	

Prerequisite course(s):

Fundamental knowledge of basic thermodynamic, energy conservation systems, Applied Thermodynamics and Fluid Mechanics.

Course objectives:

At the end of the course, the student is expected to

- Understand and analyse the energy data of industries
- Carryout energy accounting and balancing
- Conduct energy audit and suggest methodologies for energy savings and
- Utilise the available resources in optimal ways

Course outcomes:

Upon completion of this course, the students can able to:

1. utilise the available resources in optimal ways

- 2. apply the knowledge of the subject to calculate the efficiency of various thermal utilities.
- 3. to design suitable energy monitoring system to analyze and optimize the energy consumption in electrical utilities

4. handle various measuring devices needed for energy audit

5. understand and analyse the energy data of industries

COURSE CONTENT						
Energy Conservation and Management			Semester:	V		
Teaching Scheme:			Examination scheme			
Lectures:	3 hours/w	veek	End semester exam (ESE): 60 marks			
			Duration of ESE:	03 hours		
			Internal Sessional Exams (ISE): 40 marks			
UNIT I		No.	of Lectures: 08 Hours	Mark	s: 12	
Energy - Power - Past & Present Scenario of World; National Energy Consumption Data -						
Environmental Aspects Associated with Energy Utilization - Energy Auditing: Need, Types,						
Methodology and Barriers.	Role of E	Energy	Managers. Future Energy	gy Options:	Sustainable	

Development, Energy Crisis: Transition from carbon rich and nuclear to carbon free technologies, parameters of transition. Energy Security: Chemical and Nuclear: Non Proliferation, Energy Security, Energy Consumption and its impact on environmental climatic change.

UNIT II	No. of Lectures: 08 Hours	Marks: 12
Thermal systems, Boilers, Furnaces a	nd Thermic Fluid heaters- ef	ficiency computation and
energy conservation measures; Steam d	listribution and usage, steam tr	aps, condensate recovery,
flash steam utilization; Insulation & Re	efractories.	-

UNIT III				N	o. of Lec	tures:	08 Hours	Marks: 12			
Energy	conservation	in	major	utilities	; pumps,	fans,	blowers,	compressed	air	systems,	
Refrige	ration & Air C	ond	itioning	g systems	, Cooling	Towe	rs, DG sets	5.			

Defining monitoring & targeting, elements of monitoring & targeting, data and informationanalysis, techniques – energy consumption, production, cumulative sum of differences (CUSUM). Energy Management Information Systems (EMIS)

Basic measurements – Electrical measurements, Light, Pressure, Temperature and heat flux, Velocity and Flow rate, Vibrations, etc. Instruments Used in Energy systems: Load and power factor measuring equipment's, Wattmeter, flue gas analysis, Temperature and thermal loss measurements, air quality analysis etc. Mathematical and statistical modelling and analysis.

Unit–V:	No. of Lectures: 08 Hours	Marks: 12
Definition, Energy management (audit)	approach-understanding ener	gy costs.

Bench marking, energy performance, matching energy use to requirement, Maximizing system efficiencies, optimizing the input energy requirements, fuel and energy substitution.

Financial Management: Energy Economics- discount period, payback period, internal rate of return, net present value; Life Cycle costing- ESCO concept.

Text Books:

1. Energy Manager Training Manual (4 Volumes) Available At www.Energymanager Training.Com, A Website Administered by Bureau of Energy Efficiency (BEE), A Statutory Body Under Ministry of Power, Government of India, 2004.

Reference Books:

1. Witte. L.C., P.S. Schmidt, D.R. Brown, "Industrial Energy Management And Utilisation" Hemisphere Publ, Washington, 1988.

2. Callaghn, P.W. "Design And Management For Energy Conservation", Pergamon Press, Oxford, 1981.

3. Dryden. I.G.C., "The Efficient Use Of Energy" Butterworths, London, 1982

4. Turner. W.C., "Energy Management Hand Book", Wiley, New York, 1982.

5. Murphy. W.R. And G. Mc KAY, "Energy Management", Butterworths, London 1987.

	TRIBOLOGY									
						-				
0	T • 1 1		CC	JURSI	E OUTLIN		TDD			
Course	Tribolog	ВУ				Short	TRB	Cour	se	
The:	logonintio					The:		Code		
Course o	iescriptio	on: Einen entin e. 41	h a 1 a.r.	Indea	of Tribolo	ary The	h l			n alveda a
knowled	se ann or	thomatics	ne know	reuge	of Tribolog	gy. The	backgrou	uid moo	honia	The The
objective	ge of the	amentatics, o	undors	y, eng	ha tribilar	ical con	oont ha	ulu illec	ion	s. The
applicati	on lubric	course is to		tanu u	lie tribilog	icai con	cept, be	aring des	agn	and its
Locture		Hours/wool		No of	woolze	Totalk	AURG	Somo	stor	orodita
Lecture		2	K J	NU. UI	14	Totall	42	Seme		creuits
D	• • •	3			14		42		3	
Prerequ	Isite cour	se(s):					(h	M 1		<u>/1-1</u>
Fundame	ntal Knov	viedge of Ph	ysics, Cr	nemisti	ry, Enginee	ring Ma	ths, Fluid	Mechani	CS, IV	Tachine
Design a		ering materi	ais.							
Course (objectives				ion consid	anation t	hat affect	41.0	f	anaa af
1. 10 int		bology as an	importa	ant des	ign consid	eration t	nat affec	is the per	Iorm	ance of
2 To too	ah diffore	nt hooring ty	.s.	dalling	and norfar		ancidana	tions		
2.10 lea	ch untere	no bearing ty	pes, mo		, and perior		onsidera	lions.		
5. 10 III	ouuce co.	neepts in me		i wear	phenomena	1.				
Course o	nitcomes	•								
After suc	cessful co	ompletion of	this cou	rse the	student wi	ill be abl	e to:			
1 select	tribologic	al elements b	ased on	desig	1 considera	tions	0 10.			
2 realize	the impo	rtance of we	ar	400181	i compracia					
3. apply	the knowl	edge of and	lubrican	ts for d	lifferent ap	plicatior	IS.			
4. descri	be the co	ncept of ide	alized i	ournal	bearing ar	nd slider	bearing	under di	ffere	nt load
carrying	condition	s	under J		o o o o o o o o o o o o o o o o o o o		0000008			
5. Illustra	ate the bel	naviour of tri	bologica	al com	ponents sul	biected t	o differei	nt workin	g con	ditions
and desc	ribe differ	ent tribologi	cal meas	sures		- J			0	
		0								
			CO	URSE	E CONTEN	NT				
Tribolo	gy				Semester	•	V	1		
Teaching	g Scheme				Examina	tion sch	eme			
Lectures	:	3 hour	:s/week		End seme	ester exa	am (ESE):	60 1	marks
					Duration	of ESE	:		03	hours
Internal Sessional Exams (ISE): 40 marks										
Unit–I: No. of Lectures: 09 Hours Marks: 12										
Surfaces and Friction- Topography of Engineering surfaces- Contact between surfaces -										
Sources of sliding Friction -Adhesion Ploughint- Energy dissipation mechanisms, Friction										
Characte	Characteristics of metals - Friction of non-metals. Friction of lamellar solids - friction of									
Ceramic	materials	and polymers	s - Rolliı	ng Fric	tion. Sourc	e of Roll	ing Frict	on - Stick	c slip	motion
- Measur	ement of	Friction.								

TT 1 / TT							
Unit–II	No. of Lectures: 09 Hours	Marks: 12					
Wear- Types of wear - Simple theory of Sliding Wear Mechanism of sliding wear of metals -							
Abrasive wear. Materials for Adhesive and Abrasive wear situations - Corrosive wear -Surface							
Fatigue wear situations - Brittle Fracture wear - Wear of Ceramics and Polymers - Wear							
Measurements.							
Unit–III	No. of Lectures: 08 Hours	Marks: 12					
Lubricants and Lubrication '	Types - Types and properties of	Lubricants – Testing methods -					
Hydrodynamic Lubrication – H	Elasto hydrodynamic lubrication	- Boundary Lubrication - Solid					
Lubrication Hydrostatic Lubric	ation.	-					
Unit–IV	No. of Lectures: 08 Hours	Marks: 12					
Film Lubrication Theory- F	luid film in simple shear - Vis	scous flow between very close					
parallel plates - Shear stress v	ariation, Reynolds Equation for	film Lubrication - High speed					
unloaded journal bearings - Los	aded journal bearings - Reaction	torque on the bearings –Virtual					
Coefficient of friction - The So	merfield diagram.						
	<u>_</u>						
Unit–V	No. of Lectures: 08 Hours	Marks: 12					
Surface Engineering and Ma	aterials for Bearings- Surface	modifications - Transformation					
Hardening, surface fusion – 7	Thermo-chemical processes - S	Surface coatings – Plating and					
anodizing Fusion Processes - V	apour Phase processes - Materi	als for rolling Element bearings					
- Materials for fluid film bearing	igs - Materials for marginally lub	pricated and dry bearings.					
		`					
Text Books:							
1. Prasanta Sahoo, (2009) Engi	neering Tribology, PHI Learning	g Private Limited.					
2. Bharat Bhushan, (2002). Introduction to tribology. John Wiley and Sons							
3. T.A. Stolarski, Tribology in Machine Design Industrial Press Inc							
,, ,, ,, ,,, ,, ,,							
Reference Books:							
1. I.M. Hutchings, Tribology, F	Friction and Wear of Engineering	Material. Edward Arnold					
2 E. P. Bowden and Tabor. D.	Friction and Lubrication Heine	emann Educational Books Ltd					
3. A. Cameron, Basic Lubricati	on theory, Longman, U.K. 198	1.					
4 M I Neale (Editor) Tribology Handbook Newnes Rutter worth Heinemann UK							

- 4. M. J. Neale (Editor), Tribology Handbook, Newnes Butter worth, Heinemann, U.K.5. Fuller D.D., (1999), Theory and practice of Lubrication for engineers, John Wiley sons.

	ELECTRONIC DEVICES								
	1		C	OURSE	OUTLIN	IE	1		
Course	Electron	nic Devices				Short	ED	Course	
Title:						Title:		Code:	_
Course description:									
This is a	fundamer	ntal course, ba	asic kno	wledge o	of which i	s require	ed by all the	enginee	rs in every
sphere of	f engineer	ing & industr	y. This	course in	ncludes st	udy of s	emiconduct	tor based	electronic
devices	such as	diodes, bipo	olar jur	nction tra	ansistors,	FETs,	SCR, Inte	grated c	ircuits its
applicati	ons and re	elated compo	nents. T	This cour	se is desig	gned to i	ntroduce to	the stud	ents to the
basic pri	nciples, cl	haracteristics.	, analys	is and ap	plication	s of elec	tronic devic	ces.	
Lec	ture	Hours/we	eek	No. of	weeks	Tota	l hours	Semest	er credits
		03		1	4		42		3
Prerequ	isite cour	se(s):							
Introduc	tion to bas	sics of Electro	onics E	ngineerir	ıg				
Course	objectives	5:							
1. To d	eliver the	knowledge al	bout ph	ysics of	basic sem	iconduc	tor devices	and circu	iits.
1 To at	honoo oo	menchancian	-	:litica of	atudanta	theous	. un donator	ding of	alastronia
2. To en	mance co	to	i capad	indes of	students	unrougi	i understan	lang of	electronic
$\frac{1}{2}$ To po	form DC	is.	vois of	cinala ata	a ampli	fiore			
3.10 per	roduce an	d motivate st	ysis of a	to the use	ige ampir of advar	ners	etronic devi	000	
4. 10 m	alvze and	design electro	onic cir	cuite usi	or semico	nductor	devices	<i>ccs</i> .	
<i>J</i> . 10 and	aryze and	uesign ciccus			ig sennee	muuctor	ucvices		
Course	outcomes	:							
After suc	ccessful co	ompletion of	this cou	urse the s	tudent wi	ll be abl	e to:		
1. Studer	nts will be	e able to expla	ain wor	king of e	lectronic	devices.			
2. Stude	nts will b	e able to ana	lyze ch	aracteris	tics of se	micondu	actor device	es like di	iode, BJT,
FET, MO	OSFET, O	PAMP etc.	5						, ,
3. Studer	nts will be	e able to perfo	orm DC	and AC	analysis	of Electr	onics circuit	its.	
4. Studer	nts will be	e able to selec	t best c	ircuit for	the giver	n specifi	cations/app	lication.	
5. Studer	nts will be	e able to learn	the dif	ferent po	wer devi	ces and t	heir applica	ations.	
COURSE CONTENT									
	Elect	tronic Device	es		Semeste	er:	V		
Teaching Scheme: Examination scheme									
Lecture	5:	3 hour	s/week		End sen	nester e	xam (ESE)	:	60 marks
		•			Duration of ESE:				03 hours
					Interna	l Sessior	nal Exams	(ISE):	40 marks
	Unit–I	:	No.	of Lectu	res: 09 H	ours	Ν	Iarks: 12	2

SEMICONDUCTOR DIODES:

PN junction diode, Current equation, equivalent circuit of diode, Breakdown in PN Junction Diodes, Diode applications: Full wave Rectifier with capacitor filter Circuit, Clipper, Clamper, Voltage Multipliers. Principle of Operation and Characteristics of Tunnel Diode, Power diode, Varactor Diode, Photo diode, Zener diode characteristics, Zener as regulator.

Unit–II:	No. of Lectures: 09Hours	Marks: 12
BIPOLAR JUNCTION TRAN	NSISTORS:	

Operating Point, The DC and AC Load line, Need of biasing, Voltage Divider Bias, Bias Stability, Hybrid parameter model of BJT for Low frequency, Analysis of a Transistor Amplifier Circuit using h - Parameters for Common Base, Common Emitter and Common Collector Configurations, Comparison of CB, CE, and CC Amplifier Configurations.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12			
FIELD EFFECT TRANSIST	ORS:				

JFET, MOSFET and their parameters, Transfer characteristics equations, JFET Biasing, Different biasing methods, FET as Voltage Variable Resistor, JFET Small Signal Model, Small signal analysis of JFET for Common Source Amplifier and Common Drain Amplifier, Comparison of MOSFET with JFET and BJT.

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12		
OPERATIONAL AMPLIFIE	R AND TIMER CIRCUIT :			

Block diagram of OPAMP, Differential Amplifier - Ad, Ac & CMRR, OPAMP Applications: Inverting and Non inverting amplifier, Voltage follower (Buffer), Instrumentation Amplifier, Active first order filter: Low pass and high pass filter; IC 555 timer Operating modes: monostable, astable multivibrator.

Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
POWER DEVICES AND DISPLAY DEVICES							

SCR Construction & V-I characteristics, UJT triggering circuit, turning-off of a SCR (preliminary discussion), Gate Turn-off thyristor (GTO), Structure and V-I characteristics of Triac and Diac, Applications of Triac-Diac circuit. Power BJT, IGBT, Power MOSFET-DMOS-VMOS, LED, LCD, Photo transistor, Opto Coupler, Solar cell.

Text Books:

1. Millman and Halkies, "Integrated Electronics", TATA McGraw Hill.

2. David A. Bell, "Electronic Devices and Circuits" Oxford.

Reference Books:

- 1. R.L. Boylestad and Louis Nashelsky, " Electronic Devices and Circuit Theory", Pearson
- 2. S. Salivahanan, N. Suresh Kumar, "Electronic Devices and Circuits", Tata McGraw Hill
- 3. T. Floyd, "Electronics Devices" conventional current version, Pearson,
- 4. D. Cheruku, B. Tirumala Krishna, "Electronics Devices and Circuits", Pearson
- 5. R. Gaikward, "Op amp and Integrated circuit", 4 th Edition, Prentice Hall India Ltd

	OBJECT ORIENTED PROGRAMMING								
0			COURS	E OUTLIN		000			
Course	Object	Oriented Prog	ramming		Short	OOP	Cou	rse	
Title:	1 4'				Title:		Cod	e:	
Course description:									
	ise covers	s object-offente	a programm	ing princip	ies and t	echniqu	les using v	.++.	
Lecture		Hours/week	No. of	weeks	Total l	nours	Sem	ester	r credits
		3		14		42		3	3
Prerequ	isite:								
Compute	er Progran	nming							
Course of	objectives	5:							
1. Under	stand Obj	ect Oriented P	rogramming	concepts					
2. To bec	come a go	od programme	er	-					
Course of	outcomes	:							
After suc	cessful co	ompletion of th	is course the	e student wi	ill be abl	e to:			
1. To dif	ferentiate	between apply	ing either pr	ocedure ori	ented or	· object	oriented t	echn	ique to a
given pro	oblem.								
2. To app	ply the ad	vanced feature	s of C++ suc	h as inherit	ance, po	lymorp	hism		
3. To app	ply object	oriented techn	iques to solv	e bigger co	mputing	g proble	ms.		
			COURSI	E CONTEN	NT				
Object	Oriented	Programming	5	Semester	•		V		
Teaching	g Scheme			Examina	tion sch	eme			
Lectures	5:	3 hours	/week	End seme	ester exa	am (ES	E):	60	marks
				Duration	of ESE	:		03	hours
				Internal S	Sessiona	ıl Exam	ns (ISE):	40	marks
Unit–I:			No. of Lect	ures: 09 H	ours		Marks	: 12	
Princip	ples of O	OP: Software	erisis, Softwa	are evolutio	n, OOP	paradig	m, Basic	Conc	epts of
OOP, B	enefits &	applications o	f OOP.						
Functio	ons: Func	tion, function p	prototype, ac	cessing fun	ction an	d utility	function		
Moving	g from C	to C++: Decla	ration of var	iable, Refer	rence var	riables,	Scope res	oluti	on
operator, Member dereferencing operator, memory management operators.									
Beginning with C++: What is C++, Applications of C++, A Simple C++ Program.									
Unit–II:			No. of Lect	ures: 09 H	ours		Marks	: 12	
Classes and Objects: Class, Object, class and data abstraction, class scope and accessing class									
members	s, Control	ling access to n	nembers, Obj	ects and M	emory re	equirem	ents, Defi	ning	member
tunctions	S, A C++	program with	class, Makir	ng an outsic	te tuncti	on inlir	ne, Nestin	g of	member
function,	Private r	nember function	on, Arrays w	itnin class,	Member	allocat	10n for ol	ojects	s, Arrays
of objec	ts, Objec	ts as function	arguments.	Static Cla	ss mem	bers, St	tatic Fun	ction	s, inline
function,	function, Friend Function								

Constructors & Destructors:	Constructors, Parameterized con	structors, Multiple constructors						
in a class, Constructors with default arguments, Destructors.								
Unit–III:	No. of Lectures: 08 Hours	Marks: 12						
Polymorphism: Operator overloading concept, Use of operator overloading, defining								
operator overloading, Binary of	operator overloading.							
Inheritance- Base Class and	derived Class, protected member	ers, relationship between base						
Class and derived Class, Con	structor and destructor in Deriv	ed Class, Overriding Member						
Functions, Class Hierarchies	s, Inheritance, Public and Pr	ivate Inheritance, Levels of						
Inheritance, Multiple Inheritar	nce, Ambiguity in Multiple Inher	ritance.						
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12						
Virtual Functions-Pointers-	indirection Operators, Memory	Management: new and delete,						
Pointers to Objects, accessing	Arrays using pointers, Function	pointers, Pointers to Pointers,						
this Pointer, virtual function, p	oure virtual functions, dynamic	binding, Virtual destructor.						
Manipulators: Input, Output,	Parameterized							
Unit–V:	No. of Lectures: 08 Hours	Marks: 12						
Files and Streams : Classes f	or File Stream Operation, Openi	ng and closing a file,						
Detecting end of file, File mod	les, File pointer and their manip	ulation, Sequential input and						
output operation, Updating a f	ile: Random Access, Error hand	ling during file operations,						
Command line arguments.								
Text Books:								
1. E. Balagurusamy, Object Or	riented Programming with C++,	McGraw Hill Company, 5 th /6 th						
edition								
2. Yashawant Kanetkar, Let us C++, BPB publications								
Reference Books:								
1. Barbara Johnson, C++ progr	aming today,							

		INTRODUCTIO	ON TO	PLASTIC	ENGIN	EERING			
		C	COURS	SE OUTLIN	JE				
Course	Introdu	ction to Plastic En	gineer	ing	Short	IPE	Cour	se	
Title:					Title:		Code	:	
Course of	lescription	on:							
The cour	se consis	sts of the study of p	properti	es of polym	ers (bull	k and rhee	ological	and	thermal
propertie	s) and w	hy they are importa	nt to ui	nderstanding	g polyme	er processi	ng. This	co	urse will
emphasiz	ze the fu	ndamental principle	es of th	ne extrusion	process	and example	nine the	co	rrelation
between	elements	of the extruder, po	lymer	properties, a	nd proc	essing var	iables ar	nd v	why they
all must	be consid	ered when studying	and ur	derstanding	a plasti	cs process	ing tech	niqu	le.
Lecture		Hours/week	No. o	f weeks	Total k	nours	Seme	ste	r credits
		3		14		42		3	;
Prerequ	isite cour	rse(s):					-		
Chemist	y, Engine	eering Mechanics, In	ntroduc	ction to Engi	neering	design pri	nciples,		
Course of	bjective	s:							
1. To eva	aluate the	properties and proc	essing	methods.					
2. To ev	valuate th	e different method	ls of p	rocessing pl	lastics in	n terms o	f their f	func	lamental
advantag	es and di	sadvantages from a	produc	t design per	spective				
3. To de	escribe en	igineering design m	nethods	for plastic	products	including	g stress a	anal	ysis and
creep and	alysis.								
4. To pro	vide an a	ppreciation of the en	nvironr	nental, life c	ycle and	l recycling	issues r	elat	ed to the
use of pl	astics.								
Course of	outcomes	•							
After suc	cessful c	ompletion of this co	ourse th	e student wi	ll be abl	e to:			
1. Know	variety o	f methods used to p	rocess	commercial	plastic r	esins, incl	uding lii	nita	ations.
2. Know	the basic	tooling requiremen	ts for v	arious plasti	ic proces	ssing meth	ods.		
3. Critiq	ue the de	esign of a product r	made w	vith commen	cial pla	stic resins	and rec	om	mends a
preferred	process	for production.							
4. Perfor	m basic c	reep analysis of pla	stic par	ts.					
5. know	the impac	et of plastic on envir	ronmen	t and can de	velop sa	fety meas	ures on i	t.	
		C	OURS	E CONTEN	T				
Introdu	ction to F	Plastic Engineering	5	Semester:		V			
Teaching Scheme: Examination scheme									
Lectures	5:	3 hours/weel	k	End semes	ster exa	m (ESE):		60) marks
				Duration	of ESE:			03	hours
Internal Sessional Exams (ISE): 40 marks									
Unit–I:No. of Lectures: 09 HoursMarks: 12									
Plastics:	Plastics: Introduction, Concept of Macromolecules and Polymers, Sources of Polymers,								
Natural, Synthetic, Semisynthetic or regenerated, Thermoplastics and Thermosets, Morphology									
of Plastics, Crystalline materials, Amorphous and semi-crystalline polymers, Temperature									

dependency of Polymers, Glass Transition and Melting Temperature, Flexible and rigid behavior, Commodity and Engineering plastics

Unit–II:	No. of Lectures: 09 Hours	Marks: 12
Plastic Properties & Testing:	Physical Properties – Density,	Size, Ash content, Mechanical
Properties - Stress, Strain, D	Deformation, Creep and Stress	relaxation, Friction and wear
Resistance, viscosity, Thermal	behavior - Heat capacity or Sp	ecific heat, Thermal expansion
and contraction, Thermal cond	luctivity, working temperature	range, Effect of Processing on
properties - Processing temp	erature, residence time, shear,	, drying temperature, Testing
standards – ASTM and ISO		

Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Plastic Processing: Introductio	n, Extrusion, Single and Twin So	crew Extruders. Extrusion Dies.

Injection molding, Reaction and Gas assisted Injection molding, Blow Molding, Extrusion, Injection and Stretch blow molding, Compression, Transfer and Rotational molding, Thermoforming, Calendering, Coating, Process monitoring, Rapid prototyping.

Unit–IV: No. of Lectures: 08 Hours Mark	s: 12
---	-------

Plastic Part Design & Applications: Introduction, Safety factor, Material selection, Process selection, Structural design - Design for Stiffness, design for Strength, designing for assembly of Plastic parts – Joining of plastic components, mechanical fasteners, Bonding, Welding, Plastic assembly method selection, Finishing, Prototyping, Prototype parts, rapid tooling

Unit–V:	No. of Lectures: 08 Hours	Marks: 12
Environmental aspects of Plas	stics: Introduction, Physical and	Chemical Effects of Weathering
on Plastic Parts, Accelerated W	veathering testing, Environmenta	al Toll of using Plastics, Plastic
Consumption, Plastic Waste -	- Sources, Production, Global	and Indian Context, Plastic
Recycling and Landfills, Plastic	waste management, Best Practi	ces of Managing Plastic Waste,

Text Books:

- 1. Anshuman Shrivastav, Introduction to Plastic Engineering" Plastic Design Engineering, Elsevier
- 2. R J Crawford, Plastic Engineering, Pergamon Press
- 3. V R Gowarikar, "Polymers Science"

Reference Books:

- 1. Osswald and Menges, Materials Science of Polymers for Engineers, Hanser (1995)
- 2. Pötsch and Michaeli, Injection Molding an Introduction, Hanser (1995)
- 3. Osswald, Polymer Processing Fundamentals, Hanser (1998)
- 4. Avery, Injection Molding Alternatives, Hanser (1998)
- 5. Progelhof and Throne, Polymer Engineering Principles, Hanser (1993)
- 6. Ehrenstein, Polymeric Materials, Hanser (2001)

	INDUSTRIAL SAFETY ENGINEERING							
COURSE OUTLINE								
Course	Industri	ial Safety En	gineering		Short	ISE	Cour	se
Title:				Title:		Code	:	
Course description:								
Safety is	one of t	he key dime	nsions of eng	gineering as	set man	agement.	Safety b	y design or
preventio	on through	h design is ii	n the core for	r maintainin	g engine	ering sys	stems safe	e. Industrial
safety is	importan	t as it safegu	ards human	life, especia	ully in hi	gh-risk a	reas such	i as nuclear,
aircraft,	chemical	, oil and ga	uses, and mi	ining indus	tries, wl	nere a fa	atal mist	ake can be
catastrop	hic. Indus	strial Safety r	educes risks t	to people, ar	nd proces	sses.		
Lect	ture	Hours/we	eek No.	of weeks	Tota	l hours	Seme	ster credits
		03		14		42		03
Prerequ	isite cour	rse(s):						
Industria	l Psychol	ogy, Industria	al Economics	,				
Course of	objectives	5:						
The obje	ctive of th	is course is to	impart know	ledge on dif	ferent fa	cets and a	spects of	engineering
systems	safety, fo	ocusing on to	ools, techniqu	ues and me	thodolog	gies need	ed for pr	revention of
occurren	ces of uns	safe operation	is and accider	nts under dif	fferent in	dustrial s	ettings.	
Course of	outcomes	•						
After suc	cessful co	ompletion of	this course th	e student w	ill be abl	e to:		
1. unders	stand and	practice the c	concepts of in	dustrial safe	ety engin	eering		
2. apply	different a	assessment te	chniques to c	alculate and	l predict	losses		
3. unders	stand varie	ous human er	ror factors an	d remedies				
4. unders	stand scien	ntific way of	investigation	of accident				
5. unders	stand the	various safety	y precautions	to be taken	in vario	us indust	ries and r	emedies for
the same								
			COURS	E CONTE	NT			
Industri	al Safety	Engineering	5	Semeste	r:	V	7	
Teaching	g Scheme	:		Examina	ation scl	neme		
Lectures	5:	3 hour	s/week	End sen	nester ex	am (ESF	E):	60 marks
				Duratio	n of ESI	E:		03 hours
				Internal	Session	al Exam	s (ISE):	40 marks
	Unit–I	:	No. of Lec	tures: 09 H	ours		Marks:	12
Introduction to industrial safety engineering: Key concepts and terminology safety domain								
ontology	ontology, risk assessment and control, safety engineering and accident causing mechanism							
preliminary Hazard list, Hazard analysis, Hazard and Operability study, failure modes and effect								
analysis, identification of failure modes, Applications of Hazard identification techniques.								
	Unit–Il	[:	No. of Lec	tures: 09 H	ours		Marks:	12
Risk As	sessment	Risk asses	sment proces	s, Risk con	tour ma	p, Individ	lual risk	assessment,
Societal risk assessment, Consequences Assessment, Identification and classification of losses,								

Categories of losses, Framewo	ork for consequence assessment hierarchy, safety function deplo	, Estimation of losses, Energy yment, steps, design principles.						
deployment of design solutions	5,	,,						
	N	Maalaa 13						
Unit–III:	No. of Lectures: 08 Hours	Marks: 12						
operations Generic definition of human error. Working definition of human error Classification								
of human errors. Causes of hu	man errors/ brain bottlenecks b	uman error identification Task						
analysis Hierarchical Task	Analysis Action error mode	analysis Human reliability						
assessment HRA steps and me	thods	anarysis, mannan renability						
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12						
Accident Investigation: Intro-	duction, Incident investigation p	process, Risk score calculation,						
Guidelines for investigation	, Guidelines for team form	ation, Root cause analysis,						
Recommendation & release o	f report, Accident Analysis and	l descriptive statistics, Control						
charts • Safety variables for cor	ntrol chart analysis, Patterns in co	ontrol chart, Classification And						
Regression Tree classification	(CART), Basics of safety perform	nance indicators						
TT .*4 X7.		M. 1						
Unit-V:	No. of Lectures: 08 Hours	Marks: 12						
salety in industries: Salety in	1 1000 processing, textile, mines	, nuclear plants, thermal power						
Floatrical aquinment's Disector	r managamant	idustries. Safety în Mechanicai,						
Electrical equipment s, Disaste	i management.							
Text Books:								
1. "Accident Prevention Manua	al for Industrial Operations", N.S	.C.Chicago, 1982						
2. Heinrich H.W. "Industrial A	ccident Prevention" McGraw-Hi	ll Company, New York, 1980.						
3. Krishnan N.V. "Safety Mana	agement in Industry" Jaico Publis	shing House, Bombay, 1997.						
4. John Ridley, "Safety at World	k", Butterworth & Co., London,	1983.						
5. Blake R.B., "Industrial Safet	y" Prentice Hall, Inc., New Jerse	ey, 1973						
6. "Accident Prevention Manua	al" – NSC, Chicago, 1982.							
7. "Occupational safety Manua	l" BHEL, Trichy, 1988.							
8. "Safety Management by Joh	n V. Grimaldi and Rollin H. Sim	onds, All India Travelers Book						
seller, New Delhi, 1989.								
9. "Safety in Industry" N.V. Ki	rishnan Jaico Publishery House,	1996.						
10. Indian Boiler acts and Regu	ilations, Government of India.							
11. Maynard, Industrial Engineering. Hand book, McGraw Hill book company								
12. ILO, Introduction to Work Study								
13. Krishnan N.V. "Safety Mar	nagement in Industry" Jaico Publ	Ishing House,						
14. Khanna O.P., Industrial Eng	gineering. And Management, Dh	anpat Rai Publication, New						
Delni.								
15. Factory Act -1948	a_{a}							
17 L C Ihomh "A toxt hast	evised 1903) of Industrial Engineering" Every	at Dublishing House, India						
17. L.C. Jhamb, A text book C	or mousural Engineering, Evere	st r uonsinng mouse, maia.						
Reference Books								

- 1. Komamoto and Henley, "Probabilistic Risk Assessment for Engineering and Scientists", IEEE Press, 1995
- 2. Heinrich et al., "Industrial Accident Prevention", McGraw Hill, 1980
- 3. Petersen D, "Techniques for safety management A systems approach", ASSE 1998.
- 4. McCornick, E.J., "Human Factors in Engineering and Design", Tata McGraw-Hill, 1982.
- 5. "Accident Prevention Manual for Industrial Operations", NSC, Chicago, 1982.

		HIE	AT TRANSFER I	LAB					
LAB COURSE OUTLINE									
Course	Heat Tr	ansfer Lab		Short	HT la	ib Cours	e .		
Title:				Title:		Code:			
Course description:									
This lab	includes o	lifferent practical of	f Heat Transfer. Th	e course	e aims a	at imparting	knowledge		
of Heat 7	Transfer a	nd its modes.							
Laborat	ory	Hours/week	No. of weeks	Total l	nours	Semes	ster credits		
		2	14		28		1		
End Sen	nester Ex	am (ESE) Pattern:	Practica	al (PR)					
Prerequ	isite cour	rse(s):							
The know	wledge of	f basic heat flow ar	nd differential equa	ation of	heat tr	ansfer is rea	juired. The		
student n	nust be av	vare about correlation	on and analogies to	cope up	with p	oractical.	-		
Mathema	atics (Cal	lculus) at first ye	ar level and Eng	gineering	g Ther	modynamic	s, Applied		
Thermod	lynamics a	and Fluid Mechanic	s at Second Year L	level.					
Course of	objectives	3:							
The lab	work sho	ould clear the vision	on about all the n	nodes of	f heat	transfer. Th	e practical		
knowled	ge should	enhance the approa	ach of student to th	ne subjec	ct, whic	ch should fa	cilitate him		
for solvin	ng derivat	ions and numerical.							
Course of	outcomes								
Upon suc	ccessful c	ompletion of lab Co	ourse, student will b	be able to	o:				
Understa	nd the mo	odes of heat transfer	. The boundary con	nditions	in diffe	erent modes	of heat		
transfer.									
		LAB	COURSE CONT	TENT					
Heat tra	nsfer Lal	0	Semeste	er:		V			
Teaching	g Scheme	↓● ✓●	Examin	ation sc	heme				
Practica	l:	2 hours/week	k End sen	nester e	xam (E	SE):	25 marks		
			Interna	l Contin	uous A	Assessment	25 marks		
(ICA):									
1. Determ	nination c	of thermal conductiv	vity of metal rod / in	nsulating	g powd	er / composi	ite wall.		
2. Determination of heat transfer coefficient in natural convection and forced convection.									
3. Determination of temperature distribution, fin efficiency, effectiveness in natural convection									
and forced convection									
4. Determination of emissivity of a test surface.									
5. Determination of Stefan Boltzmann constant.									
6. Determ	nination o	of LMTD, overall he	at transfer coefficie	ent and e	ffective	eness of hear	t exchanger		
in paralle	el and cou	nter flow arrangeme	ent and compare th	em.					
7. Study	of pool be	oiling phenomenon	and determination	of critic	al heat	flux.			
8. Deterr	nination /	Study of flash & fin	re point of a given	fuel.					

Determination / Study of hash & file point of a given fuel.
 Determination of convective heat transfer coefficient for flow over a heated plate.

10. Determination / Study of specific heat of object.

Note: Lab file should contain at list EIGHT experiments from above mentioned list.

Text Books:

1. J. P. Holman, 1992 "Heat Transfer" McGraw Hill VII Edition.

2. P. Kothandaraman, "Fundamentals of Heat and Mass Transfer".

3. R. K. Rajput, "Heat and Mass Transfer", S. Chand& Company Ltd., New Delhi.

4. D. S. Kumar, "Heat and Mass Transfer" D. S. Kumar, S. K. Kataria & Sons, Delhi.

5. P. K. Nag, "Heat Transfer" Tata McGraw Hill Publishing Company Ltd., New Delhi.

6. Sachdeva R.C., "Fundamentals of Heat and Mass Transfer" Wiley Eastern Limited, Third Edition.

7. Sukhatme S.P., "A Text Book on Heat Transfer" (1989), IIIrd Edition, Orient Longmans Ltd., New Delhi.

8. Arora S.C. & Domkundwar S., "A Course in Heat and Mass Transfer" (1994), Dhanpat Rai & Sons, IVth Edition.

9. Chapman A.J., "Heat Transfer" (1989), IVth Edition.

10. Yunus A. Cengel, "Heat Transfer – A Practical Approach" (Tata McGraw Hill)

11. M. M. Rathore, "Engineering Heat and Mass Transfer", 2nd Edition, Laxmi Publications, New Delhi.

12. M. Thirumalseshwar, "Fundamentals of Heat and Mass Transfer" Pearson Education.

13. R. Rudramoorthy, K. Mayilsomy, "Heat Transfer", Pearson Education.

Reference Books:

1. Bejan, A., A. D. Kraus, "Heat Transfer Handbook", John Wiley (2003).

2. W. J. McCabe, J. Smith, P. Harriot, "Unit Operations of Chemical Engineering", Sixth Edition, McGraw Hill (2005).

3. Holman, J. P., S. Bhattacharya, "Heat Transfer", 10th Ed., Tata McGraw-Hill (2011).

4. D. Q. Kern, "Process Heat Transfer", Tata-McGraw Hill (1997).

5. R. Welty, C. E. Wicks, R. E. Wilson, G. Rorrer, "Fundamentals of Momentum, Heat and Mass Transfer", 4th Ed., Wiley (2007).

Guide lines for ICA:

Lab file should contain EIGHT experiments conducted in lab

Guidelines for ESE:

The Practical Examination will comprise of performing the experiment and viva on the Practical **Instructions for practical Exam.** :-

1. Five experiments should be selected for Practical Examination.

2. The Number of Students for each Practical set up should not be more than 5 Students.

Reference Books:

- 1. G.S. Upadhyaya and A. Upadhyaya, "Materials Science & Engineering".
- 2. M.P. Groover, "Fundamentals of Modern Manufacturing"
- 3. G.K. Lal and S.K. Choudhury, "Fundamentals of Manufacturing Processes"
- 4. E. P. DeGarmo, J.T. Black and R. Kohser, "Materials & Processes in Manufacturing"
- 5. S. Kalpakjian, "Manufacturing Engineering and Technology"
- 6. E.P. DeGarmo, "Materials and Processes in Manufacturing", Macmillan.
- 7. J.S. Campbell, "Principles of Manufacturing Materials and Process", McGraw Hill.
- 8. J.S. Schey, "Introduction of Manufacturing Processes", McGraw Hill International.
- 9. M.L. Begeman & B.H. Amstead, "Manufacturing Process", John Wiley.
- 10. H.W. Pollack, "Manufacturing and Machine Tool Operations", Prentice-Hall.
- 11. R.A. Lindberg, "Process and Materials for Manufacturing", Prentice-Hall.
- 12. L.E. Doyle, "Manufacturing Processes & Materials for Engineers", Prentice-Hall.

Guide lines for ICA:

Lab file should be from above said syllabus and to be drawn in lab.

Guidelines for ESE:

Oral will be based on the Practical Performed in the examination and the sheets included in the Journal.

MACHINE DRAWING LAB							
				0 2122			
	LA	B COUR	SE OUT	LINE			
Course Machine	CourseMachine Drawing LabShortMDLCourse						
Title:	Title: Title: Code:						
Course descriptio	on:						
This course is esse	ntial for understand	ding of w	orking dra	awings ii	n order to	manufact	ure the
parts with specified	d tolerances and ac	curacy. T	The empha	asis is giv	ven on un	derstandin	g and
preparing the asser	mbly and detailed d	lrawings	of the ma	chine uni	its.		_
Laboratory	Hours/week	No. of v	weeks	Total h	ours	Semes	ter credits
	02]	4		28		01
End Semester Exa	am (ESE) Pattern	:	Practica	ul (PR) /	Oral (OR	<u>')</u>	
Prerequisite cour	se(s):						
Engineering Graph	nics; Workshop Pra	ctice					
Course objectives							
The student will a	cquire a knowledge	e of faste	ning arrai	ngements	s such as	welding, 1	iveting the
different styles of	attachment for share	ft. The st	udent also	o is enab	led to pre	pare the a	ssembly of
various machine or	r engine componen	ts and mi	scellaneo	us machi	ne compo	onents.	
Course outcomes							
Upon successful co	ompletion of lab Co	ourse, stu	dent will	be able t	0:		
i. to define terms u	ised to explain abbi	reviations	5				
ii. to list / name / s	ketch different type	es of mac	hine parts	s, assemb	lies and t	heir conve	entions
iii. to read and inte	erpret the given deta	ails of pro	oduction d	lrawing o	of machin	e compon	ents
iv. to imagine shap	bes and sizes of con	nponents	and visua	ulize / dra	w their v	iews in di	fferent
directions							
v. to imagine and a	assemble the given	set of co	mponents	to form	a workab	le machine	e assembly
	T 4 T						
M		S COUR	SE CON	IENI		T	7
Machine Drawing	g Lab		Semeste	er:			/
Teaching Scheme			Examin	ation scl	neme		
Practical:	2 hours/wee	k	End sen	nester ex	am (ESF	E):	25 marks
			Interna	l Contin	uous Ass	essment	25 marks
(ICA):							
1							
1. Assignment on Conventional representation of machine components, conventional signs used							
for welding as per BIS, standard abbreviations in droughting							

2. Detail and assembly drawing of the following with complete dimensioning, tolerances, material and surface finish specifications. (Any one of the following manually and with CAD) (i) Foot Step Bearing (ii) Stuffing Box (iii) Cross Head of IC engine (iv) Eccentric (v) Petrol Engine Connecting rod (vi) Piston assembly (vii) Screw jacks (viii) Machine Vice (ix) Plummer Block (x) Tailstock of lathe (xi) Steam Stop Valve (xii) Spring loaded Safety Valve (xiii) Feed Check Valve (xiv) Box type Jig (xv) Marine Engine Connecting rod (xvi) Steam Engine Connecting rod (xvii) Radial Engine Sub Assembly (xviii) Rotary Gear Pump (xix) Air Valve

(xx) Fuel Injector (xxi) Single Plate Clutch (xxii) Square Tool Post (xxiii) Shaper tool head slide (xxiii) Milling Machine Tail stock (xxiv) Revolving Centre (xxv) Floating reamer holder (xxvi) Swivel Machine vice (xxvii) Indexing Drill Jig (xxviii) Self centering chuck (xxix) Four Jaw Chuck (xxx) Gate Valve (xxxi) Non return valve (xxxii) Blow off valve (xxxiii) Pressure Relief Valve (xxxiv) Lever Safety Valve (xxxv) Ramsbottom Safety Valve (xxxvi) Swivel Bearing (xxxvii) Crane hook (xxxviii) Pipe Vice (xxxix) Speed Reducer

3. Prepare single line and double line diagrams of piping layouts & Draw the assembly drawing and sectioned views of pipe joint.

4. Practice the Preparation of working drawing of welded fabrications.

Text Books:

1. "Machine Drawing", Third Edition, New Age International Publishers, K. L. Narayana, P. Kannaiah, K. Venkata Reddy.

2. "Machine Drawing", R K Dhawan, S Chand.

Reference Books:

- 1. T.S.M & S.S.M in respect of Technical Drawing by TTTI, Madras
- 2. Machine Drawing by A.C. Parkinson.
- 3. Machine Drawing by Jones & Jones.
- 4. Machine Drawing by N.D. Bhat.
- 5. A text book for Technical Schools Engg. Drawing by N.C.E.R.T
- 6. Machine Drawing by R.B. Gupta.
- 7. Indian Standard Scheme of symbol for Welding by SP-46-1988.
- 8. Machine Drawing by Bhattacharyya (Oxford Publishers).
- 9. Machine Drawing by Ajeeth Singh (MGH Publishers)
- 10. Machine Drawing by N. Siddeswar, Kannaih, Sastri. (MGH Publishers)

Guide lines for ICA:

Lab file should be from above said syllabus and to be drawn in lab.

Guidelines for ESE:

Oral will be based on the Practical Performed in the examination and the sheets included in the Journal.
Minor Project (Stage – I)							
		T A	P COUDSE OUT	TINE			
LAB COURSE OUTLINE Course Minor Project (Stage – I) Short MPROL Course							
Title:				Title:	SI	Code:	
Course	descriptio	on:					
Minor pr	roject rep	resent the culminat	ion of study towar	ds the B	achelor of E	Ingineerii	ng degree.
The min	or project	t offers the opportu	inity to apply and	extend n	naterial lear	ned throu	ighout the
program	. The em	phasis is necessar	ily on facilitating	student	learning in	technica	al, project
manager Laborat	nent and j	Hours/wook	S.	Totall	201189	Somost	or or odita
Laborat	ory	Hours/week	NO. OI WEEKS	Total I		Semest	$\frac{1}{2}$
E 10	(F		14		84		3
End Sen	nester Ex	am (ESE) Pattern					
Prerequ	isite coui	rse(s):					
C	- L ! 4!						
	objective	S:	P has a d amin ain la	a of muci			
$\begin{array}{ccc} 1. & 10 \\ 2 & T_{0} \end{array}$	nderstand	the basic concepts	& broad principle	s of proje	ects.	n Proom	nlation
2.100	nderstand	the value of achiev	ing perfection in p	broject in		d multidi	ipieuon.
5. 10 a	ppry me i	neoretical concepts	s to solve problem	is with te	annwork and	a munuai	scipinary
4 To d	emonstra	te professionalism	with ethics prese	ent effect	tive commu	nication	skills and
relate	e engineer	ring issues to broad	er societal context			incation	skills and
Telut	e engineer		er soeretar context	•			
Course	outcomes	:					
Upon su	ccessful c	ompletion of lab C	ourse, student will	be able t	to:		
1. Dem	onstrate a	sound technical kr	nowledge of their s	elected p	project topic.		
2. Unde	ertake pro	blem identification	, formulation and s	solution.	0 1		
3. Desig	gn engine	ering solutions to c	omplex problems	utilizing	a systems ap	pproach.	
4. Cond	luct an en	gineering project					
5. Demonstrate the knowledge, skills and attitudes of a professional engineer.							
LAB COURSE CONTENT							
Minor P	roject (S	tage – I)	Semest	ter:		V	
Teachin	g Scheme	2:	Exami	nation so	cheme:		
Practica	l:	6 hours/wee	k Interna (ICA):	al Contii	nuous Asses	sment	50 marks
			I				
At third year, the students shall carry out a minor project in a group of maximum up to 5 students.							

At third year, the students shall carry out a minor project in a group of maximum up to 5 students. The project work spans both the semesters. By the end of Semester – V the students shall complete the partial work, and by the end of Semester – VI the students shall complete remaining part of the project. Assessment for the project shall also include presentation by the students. Each teacher can guide maximum 04 groups of minor projects.

The students should take project work, as specified in the curriculum, based on the knowledge acquired by the students during the degree course till Semester - IV. The project

may be either fully theoretical/practical or involving both theoretical and practical work to be assigned by the Department. The work may also be Study/Survey/Design.

Minor Project (Stage – I) may involve literature survey, problem identification, design methodology, collection of data etc. The project work shall involve sufficient work so that students get acquainted with different aspects of design and analysis. Approximately more than 50% work should be completed by the end of Semester – V. Each student group should submit partial project report in the form of spiral bound at the end of Semester –V.

Each student group is required to maintain separate log book for documenting various activities of the project.

Suggestive outline for the partial project report is as follows.

Abstract Chapter 1. Introduction

- Background
- Motivation
- Problem Definition
- Scope
- Objectives
- Selection of Life cycle Model for Development
- Organization of Report
- Summary

Chapter 2. Project Planning and Management

- Feasibility Study
- Risk Analysis
- Project Scheduling
- Effort Allocation
- Cost Estimation
- Summary

Chapter 3. Literature Survey

- Sources of information
- List of important literature
- Literature review
- Summary

Chapter 4. Future Work Plan

• Summary

Chapter 5. Conclusion & Future Work

Bibliography

Index

Appendix

Guide lines for ICA:

The Internal Continuous Assessment (ICA) for project shall be based on continuous evaluation of students' performance, active participation, knowledge / skill acquired throughout semester and presentation by the students. The assessment shall be done jointly by the guide and departmental committee. A three-member departmental committee including guide, appointed by Head of the department, shall be constituted for the assessment. The assessment for Minor Project (stage – I) in Semester – V shall be as per the guidelines given in Table – A.

Table – A									
			Assess	Assessment by Comm					
Sr. No.	Name of the Student	Attendance / Participation	Problem Identification / Project Objectives	Literature Survey	Methodology / Design	Report	Depth of Understanding	Presentation	Total
	Marks	5	5	5	5	5	10	15	50

Constitution of India

Basic features and fundamental principles

The Constitution of India is the supreme law of India. Parliament of India cannot make any law which violates the Fundamental Rights enumerated under the Part III of the Constitution. The Parliament of India has been empowered to amend the Constitution under Article 368, however, it cannot use this power to change the "basic structure" of the constitution, which has been ruled and explained by the Supreme Court of India in its historical judgments. The Constitution of India reflects the idea of "Constitutionalism" – a modern and progressive concept historically developed by the thinkers of "liberalism" – an ideology which has been recognized as one of the most popular political ideology and result of historical struggles against arbitrary use of sovereign power by state. The historic revolutions in France, England, America and particularly European Renaissance and Reformation movement have resulted into progressive legal reforms in the form of "constitutionalism" in many countries. The Constitution of India was made by borrowing models and principles from many countries including United Kingdom and America.

The Constitution of India is not only a legal document but it also reflects social, political and economic perspectives of the Indian Society. It reflects India's legacy of "diversity". It has been said that Indian constitution reflects ideals of its freedom movement, however, few critics have argued that it does not truly incorporate our ancient legal heritage and cultural values. No law can be "static" and therefore the Constitution of India has also been amended more than one hundred times. These amendments reflect political, social and economic developments since the year 1950. The Indian judiciary and particularly the Supreme Court of India has played an historic role as the guardian of people. It has been protecting not only basic ideals of the Constitution. The judicial activism of the Supreme Court of India and its historic contributions has been recognized throughout the world and it gradually made it "as one of the strongest court in the world".

Course content

1. Meaning of the constitution law and constitutionalism

- 2. Historical perspective of the Constitution of India
- 3. Salient features and characteristics of the Constitution of India
- 4. Scheme of the fundamental rights
- 5. The scheme of the Fundamental Duties and its legal status
- 6. The Directive Principles of State Policy Its importance and implementation

7. Federal structure and distribution of legislative and financial powers between the Union and the States

8. Parliamentary Form of Government in India – The constitution powers and status of the President of India

- 9. Amendment of the Constitutional Powers and Procedure
- 10. The historical perspectives of the constitutional amendments in India
- 11. Emergency Provisions: National Emergency, President Rule, Financial Emergency
- 12. Local Self Government Constitutional Scheme in India
- 13. Scheme of the Fundamental Right to Equality
- 14. Scheme of the Fundamental Right to certain Freedom under Article 19
- 15. Scope of the Right to Life and Personal Liberty under Article 21

Kavayatri Bahinabai Chaudhari NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Bachelor of Engineering (Mechanical Engineering)

Faculty of Science and Technology

Syllabus Structure & Contents of Third Year of Engineering

Semester-VI

w.e.f. 2020 - 2021

KINEMATICS AND THEORY OF MACHINES							
COURSE OUTLINE							
Course Kinematics	and Theory of	Machine	S	Short	KTM	Course	
Title:				Title:		Code:	
Course description:		1 .	C 1	•	1 1 .	T. 1	11 1 1 1
This course will deal	with kinematio	c analysis	of mech	anisms	and machi	nes. It wi	ll include
motion and force tran	smission analys	SIS OF LINKA	ige mech	anisms.	It discusses	s the dyna	mic force
analysis, Cams, Gove	ernor, Gyroscop	le and Bal	ancing n	nethous.	The cours	f mash an	
various concepts by w	orking out prob	their heai	ant to rea	ai iiie ap	plications of la	in amotio	isins. The
Locture H	neip students in	No of w	c understa	anding a	nd use of K	Somosto	analysis.
	02	10. 01 W	eeks	Total I	42	Semeste	
	03	14	ł		42	()3
Prerequisite course(s	<u>s):</u>	r					
Engineering Mechanic	c, Strength of M	laterials					
Course objectives:							
1. To understand the	e kinematics and	d rigid- bo	ody dyna	mics of	kinematica	lly driven	machine
components		1 1	· · ,	c	.1 1' 1		. •. 1
2. To understand the	motion of linke	ed mechan	isms in to	erms of	the displace	ement, vel	locity and
acceleration at any	point in a rigid	1111K	1				
3. To be able to desig	in some linkage	mechanisi	ns and ca	im syste	ms to gener	ate specifi	lea output
MOtion 4 To understand the	trinomotion of a	oon trains					
4. To understand the	kinematics of g	ear trains					
Course outcomes:							
After successful comp	pletion of this co	ourse the s	tudent wi	ill be abl	e to:		
1. Understand basic s	structure and ele	ements of 1	nachines	and Ide	ntify functi	onal chara	acteristics
of various machine ele	ements				•		
2. Determine position	n, velocity and a	cceleratio	n of linka	ages in n	nechanism	at any inst	tant
3. Analyze the motio	on and the dyna	mical forc	es acting	g on med	chanical sys	stems con	nposed of
linkages.							
4. Design cam for a	given motion of	r a given i	nput/outj	put moti	on relations	ship and e	exemplify
concepts of static and	dynamic mass b	balancing.					
5. Apply the principles of gyroscopic effects and stabilization on various transport vehicles and							
applications of various governors.							
COURSE CONTENT							
Kinematics and The	ory of Machine	Ś	Semeste	er:			
Teaching Scheme: Examination scheme							
Lectures:	3 hours/weel	ĸ	End sen	nester e	xam (ESE)	: (60 marks
		F	Duratio	n of ES	E:		03 hours
			Internal	l Session	nal Exams	(ISE):	40 marks
Unit–I:	No.	of Lectur	es: 09 H	ours	N	Iarks: 12	

MECHANISMS & MACHINES: Introduction, Constrained motion, Link, Kinematic pair, Types of Joints, Degree of Freedom, Classification of Kinematic pairs, Kinematic chain, Mechanism and structures, Equivalent Mechanisms, Simple mechanism, Compound mechanism, Planer mechanism, Spatial mechanism, Four Bar Mechanism, Mechanical Advantage, Transmission angle, Slider Crank Mechanism, Double Slider Crank Mechanism. Pantograph, Toggle Mechanism, Geneva Mechanism, Automobile steering Mechanism – Davis Steering Gear, Ackermann Gear, Hooks Joint, Double Hook Joint.

Unit–II:No. of Lectures: 09 HoursMarks: 12VELOCITY AND ACCELERATION ANALYSIS: Absolute and Relative Motions, motionof a link, Instantaneous centre, Kennedy's Theorem, Locating I-Centers of Four Bar Mechanismand Slider Crank mechanism, Space and Body Centrode, Relative Velocity of Four BarMechanism and Slider Crank mechanism, Rubbing Velocity, Acceleration, Radial andTangential acceleration, Relative acceleration of Four Bar Mechanism and Slider Crankmechanism, Rubbing Velocity, Acceleration, Radial andTangential acceleration, Relative acceleration of Four Bar Mechanism and Slider Crankmechanism, Coriolis Acceleration, Klein's Construction.

Unit–III:No. of Lectures: 08 HoursMarks: 12DYNAMIC FORCE ANALYSIS: D' Alembert's Principle, Inertia Force, Dynamic analysis
of Four Bar Mechanism and Slider Crank mechanism, Engine force analysis, Simple and
Compound Pendulum, Dynamically Equivalent System, Inertia of Connecting Rod,

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12
CAMS: Types of Cams and Fo	llowers, Terminology, Motions	of the Follower, Layout of Cam
profiles, Specified Contour Can	ns, Circular and Tangent Cams, P	ressure angle and Undercutting,
Sizing of Cams.		

BALANCING: Need of Balancing, Static and Dynamic Balancing, Balancing of several masses in different planes, Balancing of reciprocating masses.

|--|

GOVERNORS: Introduction, Types of Governors, Watt Governor, Proell Governor, Wilson Hartnell Governor, Inertia Governor, Controlling Force, Sensitiveness, Hunting, Isochronism, Stability, Effort, Power of Governor.

GYROSCOPE: Gyroscopic Principle, Gyroscopic Effect, Gyroscopic Effects on Aeroplanes, Naval ships, Stability of an Automobile, Stability of two wheels Vehicle.

Text Books:

- 1. Cleghorn W. L., Mechanisms of Machines, Oxford University Press, 2005.
- 2. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGraw Hill, 2009.
- 3. Ratan S. S., Theory of Machines, 4th edition, Tata McGraw Hill, 2014.
- 4. Khurmi R. S, Theory of Machines, 14th edition, S. Chand & Co. Ltd., 2005.
- 5. Singh V. P., Theory of Machines, Dhanpat Rai & Co.
- 6. Bansal R. K., Theory of Machines, Laxmi Publications.
- 7. Singh Sadhu, Theory of Machines, Pearson Publication.

Reference Books:

1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.

- 2. Ghosh A. and Mallick A. K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988.
- 3. Lal Jagdish, Theory of Mechanisms & Machines, Metropoliton Book Co.
- 4. Shingley J. E. and Uicker J. J., Theory of Machines and Mechanisms, McGraw Hill International Book Co.
- 5. Ballaney P. L., Theory of Machine, Khanna Publication.

MANUFACTURING TECHNOLOGY								
0		(COURSE	JUTLIN			0	
Course	Manufac	turing Technolog	<u>sy</u>		Short	INI I	Course	2
Course (locorintio	n•			The:		Coue:	
This cou	rea is desid	u. med to help studer	nt understa	nd advar	ced mad	hining pro	cess ran	d
nrototyni	ng and aut	tomation of manuf	acturing n	rocess T	bis cour	se will also	heln stu	dents to
estimate	different f	orces and their rela	ationship d	uring me	etal cutti	ng. They w	ill be far	niliarized
with con	puter aide	d manufacturing a	nd comput	er integr	ated mai	ufacturing		liiilail20a
Lecture	<u>p = = = = = = = = = = = = = = = = = = =</u>	Hours/week	No. of w	eeks	Total h	nours	Semest	ter credits
	-	03	14			42		3
Prereau	isite cours	se(s):						
Manufac	turing pro	cess. Workshop Te	echnology.					
Course	bjectives	· · · · · · · · · · · · · · · · · · ·						
(i)To pro	vide know	ledge on machine	s and relate	ed tools f	for manu	facturing v	arious co	omponents.
(ii) To u	nderstand t	he relationship be	tween proc	ess and s	system in	n manufact	uring doi	nain.
(iii) To i	dentify the	techniques for the	quality as	surance	of the pr	oducts and	the optin	nality of
the proce	ess in terms	s of resources and	time mana	gement.	_		_	-
Course of	outcomes:							
After suc	cessful co	mpletion of this co	ourse the st	udent wi	ill be abl	e to:		
1. Under	stand geor	netry and use of si	ingle point	cutting	tool, for	ces of macl	nining an	d different
types of	tool wear.							
2. Under	stand work	king principle of va	arious mac	hining p	rocesses	their appli	cations.	
3. Under	stand rapic	l prototyping, its t	ypes and ro	ole of aut	tomation	in manufa	cturing in	ndustry.
4. Under	stand diffe	rent advanced mai	nufacturing	g process				
5. Under	stand aspe	cts product design	and manu	tacturing				
МС.		<u> </u>	OURSE		NT	X7		
Manufa		echnology		Semeste	er:	VI		
Teachin	g Scheme:			Examin	ation sc	heme		
Lectures	:	3 hours/wee	k	End sen	nester e	xam (ESE)):	60 marks
	Duration of ESE:03 hours					03 hours		
Internal Sessional Exams (ISE): 40 marks								
Unit–I: No. of Lectures: 09 Hours Marks: 12								
Theory of Metal Cutting : Introduction, The mechanics of chip formation, single point cutting								
tool, methods of machining, Types of chips, Determination of shear angle, Force relations,								
energy considerations in metal cutting, Tool wear and tool life, Economics of metal cutting.								
	** *:				. I			
	Unit–II:		of Lectur	<u>es: 09 H</u>	ours	<u>N</u>	<u>/larks: 1</u>	2
Advance	d Machi	ning Processes:	Introduct	ion, Ch	nemical	Machining	g, Electi	rochemical
Machinii	ng, Electr	o Chemical Gri	ndıng, Ele	ectrical	Discharg	ge Machir	ung, La	ser Beam

Machining, Electron Beam Machining, Water Jet Machining, Abrasive Jet Machining, Hybrid Machining System, Economics of Advanced Machining Processes.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Rapid Prototyping and Au	itomation of manufacturing p	processes: Rapid Prototyping;
Introduction, Subtractive proc	cesses, Additive processes, Virtua	al prototyping, Self-replicating
machine, Direct manufacturi	ng and rapid tooling. Automati	on; Introduction, Automation,
Numerical control, Adaptive c	ontrol, material handling and mov	ement, Industrial robots, sensor
technology, flexible fixturing,	assembly systems, Design consid	eration for fixturing, assembly,
disassembly and servicing, Ec	onomic consideration.	
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12
Advanced Manufacturing:	Computer aided manufacturing	; Introduction, Manufacturing
System, Computer Aided D	Design and Engineering, Compu	iter Aided Process Planning,
Computer Simulation of Mar	ufacturing Processes, Group Tec	chnology. Computer Integrated
Manufacturing; Introduction,	Cellular Manufacturing, Flexible	Manufacturing system, Holonic
Manufacturing, Just in Time	Production, Lean Manufacturing	, Communication Networks in
Manufacturing		, ,
Unit–V:	No. of Lectures: 08 Hours	Marks: 12
Product Design and Manuf	acturing: Introduction, Product	Design, Product Quality, Life-
Cycle Assessment and sustai	inable manufacturing, Energy Co	onsumption in Manufacturing,
Material Selection for Produ	cts. Material Substitution. Manu	facturing Process Capabilities.
Process Selection, Manufactur	ring Costs and Cost Reduction.	8
	6	
Text Books:		
1. Hajara Chaudhary and Bose	e, Element of Workshop Technolo	gy Volume I and II - S.K., Asia
Publishing House.	1	
2. P.N.Rao, Production Techn	ology Volume I and II – Tata McC	Fraw Hill Publication.
3. R.K.Jain. Production Techn	ology- Khanna Publications.	
4. P.C.Sharma, Production Te	chnology-, Khanna Publication.	
5. Chapman W.A.J., Worksho	p Technology- ELBS Publication	
6. HMT. Production Technolo	gy- Tata McGraw Hill Publication	n.
Reference Books:		
1. Kalpak Jain and Schmid,	Manufacturing processes for engi	ineering materials (7 th Edition)-
Pearson India, 2014.		2
2. Taha H. A., Operations R	esearch. 6 th Edition. Prentice Hall	of India, 2003.
3. Shenov G.V. and Shrivas	tava U.K., Operations Research f	or Management, WileyEastern.
1994.		······································
4. Mikell P. Groover. Fu	ndamentals of Modern Manufa	cturing: Materials. Processes.
andSystems		<i>c · · · · , · · · · · · · · · · · · · · · · · · ·</i>
5. Degarmo, Black &Kohse	r, Materials and Processes in Man	ufacturing

- 6. Materials and processes in manufacturing, J T Black, Ronald A. Kosher, DeGarmos, , Wiley student edition
- 7. Roy A Lindberg, Process And Material Of Manufacturing, Prentice Hall of India Pvt Ltd.

MATERIAL ENGINEERING								
Course 1	Materia	I Engineerin	g		Short T:41aa	ME	Cours	e
The:	agnintio				Title:		Code:	
This course	escriptio	III:	uction of th	a fundamente	alc of M	starial Saia	noo and	Matallurgy
to undergr	e provid	tudents The	objective o	f the course i	als of IVI	aretand the	hasic n	inciples of
material s	accience	and metallur	av It inclu	ides mechan	ical test	ing to det	ermine i	nechanical
nroperties	It also	includes va	rious heat	treatments	introduc	tion of fur	maces a	nd various
engineerin	o materi	als and their	application	s and a second s	muouue	uon or rui	naces a	ilu various
Lecture		Hours/week	K No.	of weeks	Total l	nours	Semes	ter credits
		03		14		42		03
Prerequis	site cour	se(s):	I					
Fundamen	tal know	vledge of Eng	ineering Cl	nemistry and	Physics			
Course of	ojectives	:	<u> </u>	ž	ž			
1. Underst	anding c	of the correlat	ion between	n the internal	structure	e of materia	ls, their i	nechanical
properties	and vari	ous methods	to quantify	their mechan	ical inte	grity and fa	ilure crit	eria.
2. To prov	vide a det	tailed interpre	etation of ed	luilibrium ph	ase diag	rams		
3. Learnin	ig about	different pha	ses and hea	t treatment n	nethods t	to tailor the	properti	es of Fe-C
alloys.								
Course ou	itcomes							
After succ	essful co	ompletion of	this course	the student w	ill be ab	le to:		
1. Identify	crystal s	structures for	various ma	terials and un	derstand	the defects	s in such	structures.
2. Underst	and mec	hanical prope	erties of ma	terials and us	e.			
3. Interpre	et phase of	liagram and u	inderstand	various reacti	ons on I	ron Carbon	diagram	•
4. Underst	tand how	v to tailor ma	terial prope	rties of ferrou	is and no	on-ferrous a	alloys wi	th the help
of heat tre	atment.							
5. Underst	and com	position, pro	perties and	use of alloy s	teel and	cast iron.		
			COUD					
Matarial	Enginee	ni n a	COUR	SE CONTE	<u>N I</u>	X/T		
	Cale	ring		Semester E		V1		
Teaching	Scheme	: 2 h ann	- /] -	Examina	uon sch	eme		<u>()</u>
Lectures:	Lectures:3 hours/weekEnd semester exam (ESE):60 m				60 marks			
	Duration of ESE: 03 hours					05 Hours		
Internal Sessional Exams (ISE): 40 marks								
Crystal S	Unit–I	. Unit calls	No. OI Lo	ectures: 09 H	ours	N omios Imp	arfaction	<u>Z</u>
Crystal Structure: Unit cells, Metallic crystal structures, Ceramics. Imperfection in solids:								
systems of	ritically	resolved show	unic utiec	is, uisiocatio	n suellg	menning me	Anamsii	is and stip
systems, c	incarry		u 511055.					
	Unit_I	[No. of La	ectures: A9 H	ours	ν	larke 1	2

Mechanical Property measurement: Tensile, compression and torsion tests; Young's modulus, relations between true and engineering stress-strain curves, generalized Hooke's law, yielding and yield strength, ductility, resilience, toughness and elastic recovery; Hardness: Rockwell, Brinell and Vickers and their relation to strength.

Static failure theories: Ductile and brittle failure mechanisms, Fracture mechanics: Introduction to Stress-intensity factor approach and Griffith criterion. Fatigue failure: High cycle fatigue, Stress-life approach, SN curve, endurance and fatigue limits, Fracture with fatigue, Introduction to non-destructive testing (NDT)

Unit–III	No. of Lectures: 08 Hours	Marks: 12
Equilibrium Diagrams: Alloy	s, substitutional and interstitial s	olid solutions- Phase diagrams:

Interpretation of binary phase diagrams and microstructure development; eutectic, peritectoid and monotectic reactions. Iron Iron-carbide phase diagram and microstructural aspects of ledeburite, austenite, ferrite and cementite, cast iron

Unit-IVNo. of Lectures: 08 HoursMarks: 12Heat treatment of Steel: Annealing, tempering, normalising and spheroidising, isothermal
transformation diagrams for Fe-C alloys and microstructure development. Continuous cooling
curves and interpretation of final microstructures and properties- austempering, martempering,
case hardening, carburizing, nitriding, cyaniding, carbo-nitriding, flame and induction
hardening, vacuum and plasma hardening

Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Alloy steel and Cast Iron: A	Alloying of steel, properties of	stainless steel and tool steels,					
maraging steels- cast irons; grey, white, malleable and spheroidal cast irons- copper and copper							
alloys; brass, bronze and cupro-nickel; Aluminium and Al-Cu – Mg alloys- Nickel based							
superalloys and Titanium alloys	5						

Text Books:

1. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India.

2. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint, 2002.

3. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.

4. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

Reference Books:

1. J.T. Black, Ronald A. Kosher, Degarmo's "Materials and processes in manufacturing", Willey student edition.

2. V. D. Kodgire, Material Science and Metallurgy for Engineers, Everest Publishing House. Pune

3. B. K. Agrawal, Introduction to Engineering Materials, Tata Mcgraw Hill, New Delhi.

4. S.H. Avner, An Introduction to Physical Metallurgy, Tata Mcgraw Hill, New Delhi.

5. Mikell P. Groover, Fundamentals of modern manufacturing materials, processes and systems", by Wiley student edition, New Delhi.

6. Parashivamurthy K. I., Material Science and Metallurgy, by Pearson Publication

7. U. C. Jindal, Material Science and Metallurgy, by Pearson Publication

8. James F. Shackleford & Madanapalli K. Muralidhara, Introduction to Materials Science for Engineers, by Pearson Publication

9. O. P. Khanna, A textbook of Material Science and Metallurgy, Dhanpat Rai Publication.

MECHANICAL TRANSMISSION SYSTEMS									
	COURSE OUTLINE								
Course	Mechan	ical Transmis	ssion System	ns	Short	MTS	Cou	rse	
Title:					Title:		Cod	e:	
Course	descriptio	on:				2			
The cou	rse aims	to impart ba	sic skills a	nd understa	nding o	f trans	mission s	yste	ms basic
components their working principle, classification and performance characteristics.									
Lecture Hours/week No. of weeks Total hours Semester credits							r credits		
		03		14		42		0	4
Prerequ	isite cour	se(s):							
Knowlea	ge of Eng	ineering Mech	nanics and T	heory of Me	chanics.				
Course	objectives	5:							
Understa	inding of t	functional requ	uirements of	different co	mponen	ts of tra	ansmissio	ı sys	tem for
designin	g purpose	_			-			-	
Course	outcomes	:							
After suc	ccessful co	ompletion of th	nis course th	e student wi	ill be abl	le to:			
1. handle	e the diffe	rent power trai	nsmitting de	vices.					
2. develo	op compe	tency in work	ting and use	e of compon	nents tho	ose are	use while	trai	nsmitting
torque.									
3. develo	op compet	ency in unders	standing of t	heory of all	types of	gear a	nd gear tra	ins.	
4. unders	stand the f	force analysis	of power tra	in componer	nts gears	5			
5. aware	about the	Automatic Tr	ansmission	system and t	their con	nponen	ts.		
			COURS	F CONTEN	NT				
Mechan	ical Tran	smission Syst		Semester.	11			VI	
Toochin	a Schome		cms	Evominot	ion scho	mo		• •	
Looturo		2 hours	/wool	Examination End como	ton ovo	m (FSI	<u>.</u> .	6) morka
Lecture	•	5 11001 5	/ WEEK	Duration	of ESE.	III (LSI	- <i>)</i> .		hours
				Internal S	orgional	From	a (ISE).	0.) morks
Internal Sessional Exams (ISE): 40 marks							J marks		
Unit-I No. of Lectures: 09 Hours Marks: 12									
Motorial	ve: - mut	Polta Types of	CHOIL OF A E	mines Valor	i ypes of	Dell I	of Polt C	pes	of Polt
Material used for Belts, Types of Flat Belt Drives, Velocity Ratio, Slip of Belt, Creep of Belt.									
Lengui of an Open Bell Drive and Cross Bell Drive, Power Transmitted, Katio of Driving Tensions Angle of Contact Centrifugal Tension Condition for the Transmission of Maximum									
Power Initial Tension									
Power, Initial Tension Rone Drives: - Introduction Rone Drive Fiber Rones Advantages Sheave for Fiber Rones									
Kope Drives: - Introduction, Rope Drive, Fiber Ropes, Advantages, Sheave for Fiber Ropes, Wire Ropes									
Chain D	Wire Ropes. Chain Drives: - Introduction Kinematic of Chain Drive Classification Advantages and								
Disadva	itages. Te	rminology. Ch	ain Speed a	nd Angular	Velocitv	of Spr	ocket. Ler	gth of	of Chain
21044741			Speed u			51 8 1		0	
	Unit–I	I	No. of Lec	tures: 09 H	ours		Marks	: 12	

Clutches: - Principle of operation, Constructional details, calculation of torque capacity, axial force. Different types of clutches, Operation of single plate helical spring, multiplate clutch, Centrifugal clutch and Cone Clutch, Dry and Wet type of clutch, Friction lining materials. Over-running clutch. Modes of operating a clutch – mechanical, hydraulic and electric, clutch maintenance

Flywheel: - Turning moment diagram and fluctuation of the crankshaft speed, D' Alembert's principle, Equivalent offset inertia force, Determination of flywheel size for different types of engine and machine.

Unit–III	No. of Lectures: 08 Hours	Marks: 12

Brakes: - Types of brakes, Force analysis of brakes, external and internal expanding shoe brakes block brakes, band brakes, block and brakes, Breaking torque.

Dynamometer: - Absorption dynamometers, transmission dynamometer- belt transmission type, Eddy current dynamometer: construction and working principle, Torque measurement, Fluid coupling.

Unit–IV	No. of Lectures: 08 Hours	Marks: 12
---------	---------------------------	-----------

Gears and Gear Trains: - Classification and terminology used Fundamental law of gearing – friction wheel, teeth for positive action and condition for constant velocity ratio. Conjugate profiles cycloidal and involute teeth profiles. Involute construction, properties and computation of path of contact and contact ratio. Interference and undercutting- Minimum number of teeth to avoid Interference, methods to avoid Interference. Introduction, classification, examples, gear ratio in simple and compound gear trains.

Unit–V	No. of Lectures: 08 Hours	Marks: 12

Automatic Transmission Parts and operation, Hydraulic automatic transmissions, Torque converter, Planetary gears train, Hydraulic controls.

Continuously variable transmissions, E-CVT, Dual-clutch transmissions, Automated Manual Transmission.

Automatic transmission modes, Manual controls, Manufacturer-specific modes.

Comparison with manual transmission, Effects on vehicle control, Cornering, maintaining constant speed, controlling wheel spin, Climbing steep slippery slopes, Energy efficiency

Text Books:

- 1. Sadhu Singh, Theory of Machines, Pearson Publication.
- 2. P. L. Ballaney, Theory of machine, Khanna publication.

Reference Books:

- 1. S. S. Rattan, Theory of Machines, Tata McGraw Hill, New Delhi.
- 2. Jagdish Lal, Theory of Mechanisms & Machines, Metropolitan Book Co.
- 3. Theory of Machines, Longman's Green & Co., London.
- 4. W. G. Green, Theory of Machines, Blackie & Sons, London.
- 5. V.P. Singh, Theory of Machines, Dhanpat Rai & Co.
- 6. Shigley, J.E and Uicker, J.J Theory of Machines and Mechanisms, McGraw45 Hill International Book Co.
- 7. Rao J.S. and Dukkipati R.V, Mechanisms and Machines theory, Wiley Eastern Ltd.

- 8. J.S.Rao, The Theory of Machines through solved problems, New age international publishers.
- 9. Dr. R. K. Bansal, A text book of Theory of Machines, Laxmi Publications.

MECHANICAL ESTIMATION & COSTING								
COURSE OUTLINE								
Course	Mee	chanical Estimatio	n & Costii	ng	Short	MEC	Course	e
Title:					Title:		Code:	
Course	descripti	on:						_
This cou	rse is des	igned to develop th	e ability in	the stu	dents to ev	aluate mat	erials, co	nsumables
and proc	ess costs	in the monetary ur	nits. Hence	, it wil	l help to in	ncrease the	producti	vity of the
organiza	tion and	conservation of val	uable reso	urces. '	This cours	e will also	help in o	developing
the skills	s require	d in the process of	f decision	making	g and to p	lan, use, n	nonitor a	nd control
resource	s optimal	ly and economicall	y. This wil	l also b	e helpful i	n budgetin	g. The re	alm of this
course is	enlarged	to estimate the pro	cess costs	for flui	d and ther	mal applica	ations als	0.
Lecture		Hours/week	No. of w	eeks	Total ho	urs	Semest	ter credits
		03	14		4	12		3
Prerequ	isite cou	rse(s):						
Manufac	turing Pr	ocesses, Manufactu	ring Techr	nology				
Course	objective	es:						
The cour	se conte	nt should be taught	and imple	mented	l with the	aim to dev	elop diff	erent types
of skills	so that st	udents are able to a	cquire follo	owing o	competenc	ies:		
1. Plan, u	use and c	ontrol resources opt	timally and	l econo	mically.			
2. Estima	ate produ	ction/operation cos	t for budge	ting an	d analysis	•		
Course	outcome	S:						
After suc	cessful c	completion of this c	ourse the s	tudent	will be abl	e to:		
i. Calcul	ate mater	ial cost of given co	mponent/p	roduct.				
ii. Identi	fy and es	timate elements of o	cost in vari	ous pro	ocesses.			
iii. Perfo	rm break	even analysis to ca	lculate bre	ak ever	n quantity.			
iv. Invest	tigate the	e problem of cost an	d suggest t	their so	lution usir	ng cost redu	iction tec	hniques.
v. Interp	ret given	model of balance s	heet and pr	ofit los	ss account.			_
		(COURSE (CONT	ENT			
Me	chanical	Estimation & Cos	sting	Seme	ster:		V	Ι
Teachin	g Schem	e:		Exam	nination so	cheme		
Lectures	5:	3 hours/wee	k	End s	semester e	xam (ESE):	60 marks
				Dura	tion of ES	E:		03 hours
				Inter	nal Sessio	nal Exams	(ISE):	40 marks
	Unit–l	I: No.	. of Lectur	es: 09	Hours	Ν	Iarks: 1	2
Estimation	ng: Impo	rtance and aim, obj	ectives, fui	nctions	, organiza	tion of Esti	mating d	epartment,
Estimation	ng Procee	dure, Constituents o	of Estimatio	on,	-		C	- '
Costing:	Definitio	on, aims, procedure	e for Costin	ng, type	es of costs	, Costing c	controls,	Difference
between	Estimati	ng and Costing, C	control of	Costs,	Elements	of PPC an	d Time	& Motion
Studies.	Studies, Allowance, Overheads, Profit and Pricing Policy.							

Studies, Allowance, Overheads, Profit and Pricing Policy.

Elements of Costs, Costing methodology for raw materials, Products and Services, Nature of Costs, Direct, Traceable and Non traceable, Wastage. Determining of Cost of raw materials, manufactured products, labor, indirect expenses and methods of overhead allocation.

Unit–II:	No. of Lectures: 09 Hours	Marks: 12
Labour Costing: Introduction,	factors influencing wage rate, a	methods of wage payments for
direct and indirect labour time v	wage system, piece rate system, V	Vage incentives: different plans.
Depreciation: Introduction, pur	pose, methods for calculating de	preciation-straight line method,
Diminishing balance method, s	um of year digit method, machin	e hour basis method.
Break even analysis: Introduct	tion, assumptions in break-even	analysis, important terms and
definitions, calculation of break	keven point, advantages and limi	tations.

	Unit–III:	No. of Lectures: 08 Hours	Marks: 12
•			

Estimating:

Definition, Different types, Methods adopted for estimation, Use of Standard data, parameter estimating, statistical estimating, feedback systems, importance, purpose and functions of estimating, Mensuration.

Estimation in Machine Shop & Foundry Shop:

Calculation of volume of machined component operation time calculation for turning, knurling, facing, drilling, boring, reaming, threading, milling, tapping, shaping, cutting, various grinding operations, planning etc.

Pattern cost estimation: material, labor, overheads, estimation of foundry costs material, labor other costs.

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12

Estimation in Forging, Welding & Sheet Metal Work:

Forging process: and types, forging operations, Estimation procedure, estimating losses and time.

Welding: Type of welding processes, types of joints. Preparation cost, Actual welding cost; material, labour, finishing on cost, power cost, factors affecting welding cost. Gas cutting cost, material, labour finishing on cost.

Sheet Metal Work: Operations in sheet metal work, joints, blank layout and size, estimation of time, capacity and types of processes.

Unit–V:	No. of Lectures: 08 Hours	Marks: 12

Budget: Objectives, classification of budgeting, Budgetary control, securing flexibilities of budgeting, limitation of budget. Operational and capital budgets, Cash flow schedules, Estimating cost, Preparing an annual budget for the Engg. Department.

Engineering Contracts: Introduction, Types of contracts and similarities. Terms of payments, firm price contracts, cost reimbursable contracts, Target of cost contracts, schedule of rate contracts, bill of quantities contracts, compound contracts, contract policy, legal rights and commercial interests.

Text Books:

1. Sinha. B. P., "Mechanical Estimating and Costing", Tata McGraw-Hill, Publishing Co. 2. T. R. Banga and S. C. Sharma, Estimations and Costing, Khanna Publishers.

3. R. Kesava, C. Elanchezhian and B. Vijaya Ramnath, Process, Planning and Cost Estimation by 2nd ed. New Age International 2018.

4. Panneerselvam R., Process Planning and Cost Estimation by Prentice-Hall of India Pvt. Ltd.

Reference Books:

1. Process Planning & Cost Estimation by R. Kesoram & others, New Age International Pub., N. Delhi.

2. Dennis Lock, Handbook of Engineering Management, Butterwork & Heinemanky Ltd.

3. Learning package in ECC, NITTTR, Bhopal.

4. Shrimali and Jain, Mechanical estimating and costing, Khanna Publishers.

5. Singh and Khan, Mechanical costing and estimation, Khanna Publishers.

INTERNAL COMBUSTION ENGINE									
			COUD	TE OUTLINI					
Course	Internal	Internal Combustion Engine Short ICE Course							
Title.	Internal	Combustion Engine Short ICE Control Title: Control					ode.		
Course d	escription	1:			THC.			Juc.	
This cour	se provide	es the knowle	edge of Inter	rnal Combust	ion Engi	ne. Co	urse inclu	udes d	lifferent
engine cy	ycles its j	performance	analysis, V	arious system	ns in IC	E Engir	ne such	as fu	el feed,
lubricatio	n, cooling	, ignition. Fu	indamental	of combustion	n in I C	Engine	e, types a	and de	esign of
combusti	on chambe	ers. Various e	mission con	trol norms and	d recent	trends i	n Interna	l Con	ibustion
Engines		1			1				
Lecture		Hours/weel	k No.	of weeks	Total	hours	Sei	meste edits	r
		3		14		42		3	}
Prerequi	site cours	e(s):							
Mathema	atics (calcu	ilus), Basic th	nermodynam	nics cycles, va	rious ide	al gas p	processes	, Engi	ineering
Thermody	ynamics, A	Applied Therr	nodynamics			0 1		. 0	U
Course o	bjectives:		-						
1. To fam	iliarize wi	th the termin	ology associ	ated with IC e	engines.				
2. To und	erstand the	e basics of IC	engines.						
3. To und	lerstand co	ombustion, ar	d various pa	arameters and	variable	es affect	ting it in	vario	us types
of IC eng	ines.								
4. To lear	n about va	rious systems	used in IC e	ngines and the	e type of	IC engi	ne requir	ed for	various
applicatio	ons								
Course o	utaamaa								
A fter suc	accomes:	nplation of th	vis course th	a student will	ha ahla t	0.			
1 perform	n a thermo	dynamic ana	lysis of Otto	Diesel and I	Dual eve	.u. le mode	-le		
$\frac{1}{2}$ analyze	e different	electronic fu	el injection s	system super	haroino	and its	effect or	n nerfo	ormance
of SI and	CI engine		er injection (ystem, supere		unu no	encer on	pene	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
3. underst	tand the ro	le of lubricat	ion in reduci	ing friction an	d wear.				
4. perform	n a combu	stion analysis	s of these fue	els in the basic	cycles.				
5. explain	the effect	s of exhaust of	emission on	human health	and vari	ious pol	lution no	orms.	
			COURS	SE CONTEN'	Т				
Internal	Combusti	on Engine		Semester	:			VI	
Teaching	Scheme:			Examina	tion sch	eme			
Lectures	•	3 hour	s/week	End seme	ester exa	m (ES	E):	60	marks
				Duration	of ESE:			03	hours
				Internal S	Sessiona	l Exam	s (ISE):	40	marks
	Unit–I		No. of L	ectures: 09 H	ours		Marks	s: 12	
Introduc	tion to IC	engine: Clas	sification, er	ngine compon	ents and	their fu	inctions,	Termi	inology.
Work (ind	dicated and	d brake), mea	n effective p	pressure.			.		
Air Stan	dard Cyc	les: Assumpt	ions, Otto, I	Diesel, Dual (Combust	ion cyc	ele, deriv	ation	of their
efficiency	v equation	, work done	and mean e	ttective press	ure, Cor	npariso	n on the	basis	of heat

input, compression ratio, Maxin	num pressure and temperature,	Actual cycle, deviation from
theoretical cycles. Pumping losse	es, time losses	
Unit–II	No. of Lectures: 09 Hours	Marks: 12
Fuel Feeding Systems for SI	engine Charge Carburetion Requ	irement, types of carburetors
according to fluid flow, Simple ca	arburetor, Air fuel ratio calculation	n additional systems in modern
carburetors, Solex carburetor. Di	sadvantages of carburetion and ga	asoline injection, MPFI.
Fuel feeding systems in CI en	gines: Requirement, classification	on, fuel feed pump, jerk type
injection fuel pump, distributor t	ype pump, injection pump govern	or, fuel injector and nozzles.
Unit–III	No. of Lectures: 08 Hours	Marks: 12
Cooling systems : requirement, ty	ypes of cooling systems, thermost	at and additives.
Lubrication : Mechanism of lub	rication, different methods, impo	ortant properties of lubricating
Ignition Systems: requirement	hattery ignition magneto ignitic	n electronic ignition system
Ignition timing spark timing adv	ance	sh, electronic ignition system,
ignition timing, spark timing adv	ance.	
Init_IV	No. of Lectures: 08 Hours	Marks· 12
Combustion in SI engines: Hou	nogeneous and heterogeneous m	ixtures Stages in combustion
Ignition lag velocity of flame pr	opagation factors influencing fla	me speed rate of pressure rise
Detonation factors affecting the	e detonation pre-ignition Ratin	g of SI engines fuels. Dones
compussion chamber of SI engine	as	g of 51 engines rueis, Dopes,
Combustion in CLengine: stage	s of combustion factors affecting	the delay period Diesel knock
Effect of engine variables on	Diesel knock Rating of CL e	ngine fuels: Cetane number
performance number compariso	on of knock in SI and CI engines	Combustion chamber for CL
engines	in of knock in 51 and 61 engine	
Unit–V	No. of Lectures: 08 Hours	Marks: 12
Advance in IC engine: Recent	t trends in internal combustion	engines Engine emission air
pollution due to engines, various	Euro norms. Un-burnt hydrocarb	on, emission in two stroke and
CI engines. CO and No _x emission	on, particulate traps, EGR, emiss	ion control methods, catalytic
converters (Introductory), crank	blow by losses. Advance IC eng	vine concepts. Hybrid engines.
Alternative fuels used in IC engin	ne.	,
Text Books:		
1) V. Ganeshan, "Internal Comb	ustion Engines". 2/e. Tata McGra	w Hill, New Delhi
2) R K Raiput "Internal Combi	istion Engines" Laxmi Publicati	ons New Delhi
3) Shyam K Agrawal "Internal	Combustion Engines" New Edge	International Publication
4) K K Ramalingam "Internal (Combustion Engines", New Edge	lication
5) Sharma R P and Mathur M I	"Internal Combustion Engines"	Standard Publications New
Delhi	, internal combustion Engines	, Standard T donearons, reew
Reference Books		
1) W. W. Pulkrabek "Fundamen	tals of Internal Combustion Engi	nes". Prentice Hall of India (P)
I td New Delhi	Computation Elign	(1)
2) E. F. Obert "Internal Combus	tion Engines and Air Pollution"	Harner and Row New Vork
	the Englises and the Fond offer,	imper und record tork.

3) Ferguson C. R, "Internal Combustion Engines", Wiley Inc. New York.

4) Sharma R.P. and Mathur M.L., "Internal Combustion Engines", Standard Publications, New Delhi.

5) Domkundwar, "Internal Combustion Engines", Dhanpat Rai & Co. New Delhi.

6) Willard W Pulkrabek. "Internal Combustion Engines", Pearson Education

7) Heywood J. B, "Internal Combustion Engine Fundamentals", McGraw Hill Book Co. NY, 1989

SOLID MECHANICS											
Course	Solid M	ochor	ning	CU	JUKSE	OUILIN	E Short	см	Co	11000	
Course Title	Solid M	echai	ncs				Short Title	21/1		de.	
Course de	escription	• In 1	this cou	rse "Sc	olid Me	chanics" a	general	theory		e to s	study the
response of	of solids to	appl	ied forc	es will	be deve	eloped and	will be	used to	study sin	nple b	oundary
value prob	lems. In a	all the	e treatme	ent wou	ild be t	hree dimen	sional.	The ain	n of the c	ourse	material
would be	to inculca	ate in	the rea	der soi	me of t	he availab	le tools	to ana	lyze a str	ructur	e and to
elucidate t	he simplif	ying	assumpt	tions m	ade to 1	nake the st	ructure	analyza	ble.		
				<u> </u>							
Lecture		Hou	rs/weel	ĸ	No. of	weeks	Total l	nours	Sen	neste	r credits
			03			14		42			3
Prerequis	ite course	e(s):							•		
Mathemat	ics (Calcu	lus) a	nd Engi	ineering	g Mecha	anics					
Course of	jectives:										
The object	tive is to j	presei	nt the m	athema	tical ar	nd physical	princip	les in u	nderstand	ling t	he linear
continuum	behavior	of so	olids.								
~											
Course of	tcomes:	1	C .1	•	.1	. 1	1 11				
After succ	essful con	npleti	on of th	is cours	se the s	tudent will	be able	to:	<u> </u>		1 1 4 1
understand	the defe	ormat	10n ben	avior (OI SOLLO	is under d	lifferent	types	of loadin	ng an	d obtain
mathemati	cal solutio	ons ic	or simple	e geome	etries.						
				CO	URSE	CONTEN	T				
Solid Mec	hanics					Semester	:			VI	
Teaching	Scheme:					Examina	tion sch	eme			
Lectures:			3 hour	s/week		End seme	ester ex	am (ES	SE):	6) marks
Tutorials			1 hour	s/week		Duration	of ESE	:	-	03	3 hours
						Internal	Session	al Exan	ns (ISE):	4) marks
	Unit–I:			No. (of Lect	ures: 09 H	ours		Mark	s: 12	
Introductio	on to Cart	esian	tensors,	Strains	s: Conc	ept of strai	n, deriva	ation of	small str	ain te	ensor and
compatibi	ity, Stress	: Der	rivation	of Cauc	chy rela	tions and e	quilibri	um and	symmetr	y equ	ations,
	∐nit_II•			No	of Lect	ures: 09 H	ours		Marke	s· 12	
Principal	stresses a	nd d	lirection	s. Con	stitutiv	e equation	s: Gene	eralized	Hooke'	s law	. Linear
elasticity,	Material	syn	metry:	Bound	lary V	alue Prob	olems:	concept	s of un	iquen	less and
superposit	ion.	5			<i>.</i>			1		1	
<u> </u>											
	Unit–III	:		No. o	of Lectu	ures: 08 H	ours		Marks	s: 12	
Plane stre	ss and pla	ine st	rain pro	oblems,	introdu	uction to g	overnin	g equat	tions in c	ylind	rical and
spherical c	oordinate	s, axi	symmet	ric prol	olems.						
					0.5						
	Unit–IV	:		No. (of Lect	ures: 08 H	ours		Marks	s: 12	

Application to thick cylinders, rotating discs, torsion of circular straight rods, torsion of shafts with rectangular cross-sections, torsion of hollow shafts, torsion of thin tubes.

Unit–V:No. of Lectures: 08 HoursMarks: 12Stress concentration problems, thermo-elasticity,2-d contact problems. Solutions using
potentials. Energy methods. Introduction to plasticity.

Text Books:

1. G. T. Mase, R. E. Smelser and G. E. Mase, Continuum Mechanics for Engineers, Third Edition, CRC Press, 2004.

2. Y. C. Fung, Foundations of Solid Mechanics, Prentice Hall International, 1965.

3. Lawrence. E. Malvern, Introduction to Mechanics of a Continuous Medium, Prentice Hall international, 1969.

Reference Books:

1. L. S. Srinath,"Advanced Mechanics of Solids" Tata McGraw Hill, 2007.

2. A.R. Ragab, and S. E. Bayoumi, "Engineering Solid Mechanics: Fundamentals and applications", CRC Press, 1999.

3. M. H. Sadd, "Elasticity: Theory, Applications and Numerics", Academic Press, 2006.

SOFTWARE ENGINEERING									
COUDSE OUTLINE									
Course	Softwar	e Engineerir		LOUILIN	Short	SE	Cou	rse	
Title:	Soltwar	e Engineern	-6		Title:	DL	Cod	e:	
Course	descriptio	on: The obje	ctive of this c	course is to	introdu	ce stud	dents the k	now	ledge of
Software	Develop	ment Life Cy	cle, application	n of analysi	s, design	n, testir	ng principle	es an	d project
planning	& manag	gement conce	pts to develop	quality sof	tware ec	onomi	cally.		
.									
Lecture		Hours/weel	k No. of	weeks	Total	nours	Sem	este	r credits
-	~	3		14		42			5
Prerequ	isite: Con	nputer progra	imming						
Course	h ia atiwa								
To help	objectives	s: o develop ski	lle that will or	able them	to const	ruct so	ftware of k	igh	quality
software	that is rel	iable and the	at is reasonably	v easy to ur	iderstan	d mod	ify and ma	intai	n
sortware	<u>unut 15 101</u>	indere, and the		<i>y</i> eus <i>y</i> eo ui	lacistan	<i>a,</i> 1110 <i>a</i>	<u>IIJ ullu lllu</u>		
Course	outcomes	:							
After suc	ccessful co	ompletion of	this course the	e student wi	ill be abl	e to:			
• Gath	er data to	analyze and s	specify the req	uirements	of a syst	em.			
• Desig	gn system	components	and environm	ents.					
• Build	l general a	and detailed r	nodels that ass	sist progran	nmers in	imple	menting a	syste	m
			COUPSI	CONTER	NT				
Softwar	e Engine	ering	COURSI	Semeste	r:		VI		
Teachin	g Scheme	: :		Examina	ation scl	heme			
Lectures	S:	3 hour	s/week	End sem	nester ex	am (E	SE):	6() marks
				Duratio	n of ESI	E:		03	3 hours
				Internal	Session	al Exa	ms (ISE):	4() marks
Unit–I:			No. of Lect	ures: 09 H	ours		Marks	12	
Nature of	f Software	e, Software P	rocess, Softwa	re Enginee	ring Prac	ctice, S	oftware M	yths.	, Generic
Process 1	nodel, Pro	ocess Assessr	nent and Impro	ovement, Pe	erspectiv	ve Proc	ess Models	s, Sp	ecialized
Process	Models, I	Personal and	Team Proces	s Models,	Agile P	rocess	models: A	gile	process,
Extreme	programm	ning							
T T •4 T T				00.11				10	
Unit–II:	nonto E-	aincorina F	No. of Lect	ures: 09 H	Duilding	r tha	Marks	12 onto	Model
Negotiat	ing requir	rements Vali	dating require	ments Re	Duniung	g life nts Δn	alveis Sc	ents enar	io-Based
Modelin	g. Data m	odeling Conc	epts. Class ba	sed modeli	ng		arysis, 50	cnar	IO-Dased
	_, III	0 0 0 m			0				
Unit–III	•		No. of Lect	ures: 08 H	ours		Marks	12	
Design	Process,	Design Co	oncepts, Desi	ign Model	l, Arch	itectu	ral Desig	n:	Software
architect	ure, Arch	itectural Styl	le, Architectur	ral design,	User I	nterfac	e Design:	The	Golden

rules, User interface analysis and design, Interface analysis, Interface design steps, Design Evaluation.

Unit-IV:No. of Lectures: 08 HoursMarks: 12Software Testing: A strategic approach to software testing, strategic issues, test strategies for
conventional software, validation testing, system testing, white box testing, basis path testing,
control structure testing, black box testing, model based testing, testing for specialized
environments, architectures and applications.

Unit–V:	No. of Lectures: 08 Hours		Marks: 12	
		-		

Software project management: Management spectrum – people, product, process, project. **Software measurement:** Size oriented metrics, function oriented metrics, reconciling LOC and FP metrics. Metrics for software quality, Integrating metrics within the software process. Metrics for small organization, establishing a software metrics program.

Text Books:

1. Roger S. Pressman, "Software Engineering – A Practitioner's Approach", 7th edition, McGraw Hill

Reference Books:

- 1. Rajib Mall, Software Engineering, 3rd Edition, PHI.
- 2. Pankaj Jalote, An Integrated Approach to Software Engineering, 3rd Edition, Springer.
- 3. Sommerville, Software Engineering, 8th Edition, Pearson.
- 4. Fairly R., Software Engineering, Tata McGraw Hill.
- 5. Davis A., Principles of Software Development, Tata McGraw Hill.
- 6. Shooman, M.L., Software Engineering, Tata McGraw-Hill.

INTRODUCTION TO DATA STRUCTURES										
			0	COURS	E OUTLIN	NE	1	1	1	
Course	Introdu	ction to Da	ta Stru	ctures		Short	IDC	Cours	e	
Title:						Title:		Code:		
Course of	lescriptio	on:								
Covers t	he design	and analys	sis of da	ata struc	tures to sol	lve mec	hanical eng	ineering	problems.	
Topics in	nclude ele	ementary da	ita struc	tures, (i	ncluding ar	rays, lir	iked lists, st	acks, an	id queues),	
advanced	l data stru	cture like t	ree, the	algorith	ms used to	manipu	late these s	tructures	s, and their	
applicati	on to solv	ing practica	al mecha	anical en	igineering p	problem	S.	Γ		
Lecture		Hours/we	ek	No. of	weeks	Total l	nours	Semes	ter credits	
		3			14		42		3	
Prerequ	isite:									
Basics of	f C Progra	amming Lai	nguage							
Course of	objectives	5:								
1. To im	part the co	oncepts of b	basic dat	a structu	ires.					
2. To uno	derstand t	he concepts	of basi	c search	ing and sor	ting tech	nniques			
3. To uno	derstand t	he basic con	ncepts o	f operati	ions in data	structu	res			
Course of	outcomes	•								
After suc	cessful co	ompletion of	of this co	ourse the	e student wi	ill be ab	e to:			
1. Choo	se the dat	a structures	s that eff	fectively	model the	informa	tion in a pro	oblem.		
2. Judge	e efficie	ncy tradeo	offs an	nong al	lternative	data st	ructure in	plemen	tations or	
comb	inations.									
3. Desig	gn, imple	ment, test,	and deb	ug prog	rams using	a varie	ty of data s	tructures	s including	
stack	, queue, l	inked list ar	nd trees.			2				
4. Imple	ement and	l know whe	n to app	oly stand	ard algorith	nms for	searching a	nd sortin	g.	
5. Appl	y algorith	im analysis	techniq	ues to e	evaluate the	e perfor	mance of a	n algorit	thm and to	
comp	bare data s	structures.								
T ()			<u> </u>	OURSE	E CONTER	NT	3.71			
Introdu	ction to I	Jata Struct	tures		Semester	•	VI			
Teaching	g Scheme	:			Examina	tion sch	eme			
Lectures	5:	3 hou	urs/wee	k	End seme	ester exa	am (ESE):		60 marks	
					Duration	of ESE	:		03 hours	
					Internal	Sessiona	al Exams (I	SE):	40 marks	
Unit–I: No. of Lectures: 09 Hours Marks: 12										
Algorithms- Problem Solving, Introduction to Algorithms, Characteristics of algorithms.										
Algorithm design tools: Pseudo code and flowchart, Analysis of Algorithms, Complexity of										
algorithms- Space complexity, Time complexity, Asymptotic notation- Big-O, Theta and										
Omega, s	standard r	neasures of	efficien	icy.						
Data Str	uctures-	Data structu	ire, Abs	tract Dat	ta Types (A	DT), Co	oncept of lin	ear and I	Non-linear,	
static and	ł dynamic	e, persistent	and eph	nemeral	data structu	ures, and	l relationshi	p among	g data, data	
structure	structure, and algorithm. From Problem to Program									

Sequential Organization- Linear Data Structure Using Sequential Organization, Array as an Abstract Data Type, Memory Representation and Address Calculation, Inserting an element into an array, Deleting an element, Multidimensional Arrays, Two-dimensional arrays.

Unit–II:No. of Lectures: 09 HoursMarks: 12Stack: Operations on stacks: Push & Pop, Array representation of stack, Linked representation
of stack, Application of stack, Conversion of infix to prefix and postfix expressions, Evaluation
of the postfix expression using a stack.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Queue: Array and linked repres	entation, Operations on queue, T	ypes of queue: Circular queues,

Advantages of Circular queue, Multiqueues, Dequeues and Priority queue, Linked Queue & operations, Applications of Queue

Unit–IV:No. of Lectures: 08 HoursMarks: 12Linked List: Basic concept, Representation of linked lists, Comparison of sequential & linked
organizations, Operations on linked list, linked list as ADT, Linked list using dynamic memory
management, Types of linked list: Linear, Circular linked list, Doubly linked list and operations,
Applications of linked list: Polynomial representation and addition, Polynomial addition &
Multiplication using linked list

Unit-V:No. of Lectures: 08 HoursMarks: 12Searching- Search Techniques, Sequential search, variant of sequential search- sentinel search,

Binary search, Fibonacci search.

Sorting- Insertion, Selection, Merge, Shell, Radix

Text Books:

- 1. Seymour Lipschutz, "Data Structure with C", Schaum outline series, Tata McGraw Hill
- 2. Rema Thareja "Data Structures Using C", 2nd Edition, Oxford University Press. 2014
- 3. R.S.Salaria, "Data Structures", Khanna Publishing House, 3rd Edition, 2017.

4. R.B.Patel, "Expert Data Structures with C", Khanna Publishing House, 3rd Edition, 2014

Reference Books:

1. Yashwant Kanetkar, "Data Structures through C", BPB Publications, 2nd Edition, 2003.

2. Ellis Horowitz, Sartaj Sahni and Susan Anderson-Freed, "Fundamentals of Data Structures in C" University Press, 2nd Edition

3. Seymour Lipschutz, "Data Structures", Schaums Outlines McGraw Hill Book Company, International Edition, 2006.

INTROD	OUCTION T	O MICRO-E	LECTRO	MECH	ANICA	AL SYS	STEMS)
		COUDG						
Course Introduc	tion to Mia	COURSI	E OUTLIN chanical	Showt	MEM		Tommoo	
Title: Systems		ro-electro Me	chanical	SHOFL Title:			ourse ode	
Course description	 n:			11110.			Joue.	
The objective of the	is course is t	o make studen	ts to gain ba	asic kno	wledge	on ove	rview o	f MEMS
(Micro electro Med	chanical Sys	tem) and to in	troduce the	student	t's vario	ous opp	ortuniti	les in the
emerging field of	MEMS. S	tudents will	acquire an	n in-dep	oth und	lerstand	ling of	MEMS
technologies and t	the Sensors,	Actuation, M	aterials an	d Appli	cations	associa	ated wi	th them.
Course includes ba	sic technolog	gy features of	MEMS dev	vices.		~		
Lecture	Hours/weel	k No. of	weeks	Total l	iours	S	emeste	r credits
	03	14		42		3		
Prerequisite cours	se(s):			_				~ ~ ~
Introduction to Elec	ctronics Engg	g, Introduction	to Elect. E	ngg., Ba	sic Elec	etrical I	Drives &	z Control
Course objectives	<u> </u>							
1. 10 study MEMS	rious Sensor	e And Actuato	re					
2. To Introduce Va	fferent Mater	s And Actuato rials Used For	MFMS					
4. To Educate O	n The App	lications Of I	MEMS To	Discip	lines B	Bevond	Electri	cal And
Mechanical Engine	ering.			P		- J		
Course outcomes:								
After successful co	mpletion of	this course the	student wi	ll be ab	le to:			
1. Understand the s	scope, impor	tance and appl	ication of r	niniatur	ized pro	oducts		
2. Analyse and Der	monstrate de	sign skills of N	MEMS devi	ices and	produc	ets		
3. Understand the c	lesign proces	ss ancor and micr	o o o tu o to r	n o givo	n onnlid	notion		
4. Select all approp	uitable mater	ial for a MFM	S product	n a give	n appne			
5. Recommend a se								
		COURSE	E CONTEN	T				
Introduction to M	licro-electro	Mechanical	Semester	:		VI		
Systems								
Teaching Scheme	:		Examina	tion sch	eme			
Lectures:	3 hour	s/week	End seme	ester exa	am (ES	E):	6() marks
			Duration	of ESE	:		03	3 hours
			Internal	Sessiona	al Exan	ns (ISE	E): 40) marks
Unit-I: No. of Lectures: 09 Hours Marks: 12								
MEMIS: Introduction, What is MEMS?, Definitions and Classifications, History, Intrinsic								
with precision Future trends Miniaturization Issues Scaling MEMs Materials Characteristics								
of MEMS Material	ls. Performar	ice Characteria	stic and Co	st of MF	EMS Pr	oducts	, Chara	
Unit–II	•	No. of Lect	ures: 09 H	ours		Mar	·ks: 12	

MEMS Sensing and Actuation – I : MEMS Sensors and actuators considerations,

Electrostatic Sensors – Parallel Plate Capacitors – Applications – Interdigitated Finger Capacitor – Comb Drive Devices – Micro Grippers – Micro Motors – Thermal Sensing And Actuation – Thermal Expansion – Thermal Couples – Thermal Resistors – Thermal Bimorph – Applications – Magnetic Actuators – Micromagnetic Components – Case Studies Of MEMS In Magnetic Actuators- Actuation Using Shape Memory Alloys.

Unit–III: No. of Lectures: 08 Hours Marks: 12

MEMS Sensing and Actuation – II: Piezoresistive Sensors – Piezoresistive Sensor Materials – Stress Analysis Of Mechanical Elements – Applications To Inertia, Pressure, Tactile And Flow Sensors – Piezoelectric Sensors And Actuators – Piezoelectric Effects – Piezoelectric Materials – Applications To Inertia , Acoustic, Tactile And Flow Sensors.

Unit–IV: No. of Lectures: 08 Hours Marks: 12

MEMS Materials: Overview of Smart Materials, Structures and Products Technologies, Smart Materials (Physical Properties), Piezoelectric Materials, Electrostrictive Materials, Magnetostrictive Materials, Magneto electric Materials, Magneto rheological Fluids Electro rheological Fluids, Super-plastic materials

Design considerations – process design – mechanical design

Unit–V: No. of Lectures: 08 Hours Marks: 12

Applications of MEMS: In Automotive, Electronics, Medical, Communication and Deference sector, Automotive airbag sensor, Medical pressure sensor, Inkjet printer head, Overhead projection display, Bio-MEMS, MOEMS, RF-MEMS, MEMS Market, Blood Pressure Sensors, Microphone, Acceleration Sensors, Gyros,

Text Books:

1. Tai-Ran Hsu, "MEMS and Microsystems Design and Manufacture", Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2002.

2. Mark Madou, "Fundamentals of Microfabrication", CRC Press, New York, 1997.

3. Julian W Gardner, "Microsensors: Principles and Applications", John Wiley and Sons, New York, 2001.

4. Sze S M, "Semiconductor Sensors", McGraw Hill, New York, 1994.

5. Chang C Y and Sze S M, "VLSI Technology", McGraw Hill, New York, 2000.

6. Chang Liu, 'Foundations Of MEMS', Pearson Education Inc., 2012.

7. Stephen D Senturia, 'Microsystem Design', Springer Publication, 2000.

Reference Books:

1. https://nptel.ac.in/courses/117105082/

2. MEMS & Microsystems: Design & Manufacture, Tai Ran Hsu, Tata McGraw Hill, 2002.

Smart Materials and Structures, M.V. Gandhi and B.S. Thompson, Chapman & Hall, London;
 Nadim Maluf, "An Introduction to Micro Electro Mechanical System Design", Artech House, 2000.

 Mohamed Gad-El-Hak, Editor, "The MEMS Handbook", CRC Press Baco Raton, 2001.
 Julian W. Gardner, Vijay K. Varadan, Osama O.Awadelkarim, Micro Sensors MEMS And Smart Devices, John Wiley & Son LTD, 2002. 7. James J.Allen, Micro Electro Mechanical System Design, CRC Press Publisher, 2005.
8. Thomas M.Adams And Richard A.Layton, "Introduction MEMS, Fabrication & Application," Springer, 2010.

PIPING ENGINEERING									
			COUDS	E OUTI IN					
Course	Pining F	Ingineering	COURS	<u>E OUILI</u>	NE Short	PE	Cours	se	
Title:	I IPING I	angineering			Title:		Code		
Course o	lescriptio	n:			110101		couc		
The obje	ctive of th	is course is to	o make studer	nts to gain b	asic kno	wledge on	overviev	v of M	EMS
(Micro e	lectro Me	chanical Svs	tem) and to in	ntroduce the	e studen	t's various	opportu	nities i	n the
emerging	g field o	f MEMS. S	Students will	acquire a	n in-der	oth unders	tanding	of M	EMS
technolo	gies and	the Sensors,	Actuation, M	laterials an	d Appl	ications as	sociated	with t	hem.
Course in	ncludes ba	sic technolo	gy features of	MEMS dev	vices.				
Lecture		Hours/weel	k No. of	weeks	Total	hours	Seme	ster cr	edits
		03	14		42		3		
Prerequ	isite cour	se(s):	I		1		1		
Introduct	tion to Ele	ctronics Eng	g, Introduction	n to Elect. E	ngg., Ba	sic Electric	cal Drive	s & Co	ontrol
Course of	objectives	5:	-						
1. To stu	dy MEMS	S technology							
2. To Int	roduce Va	arious Sensor	s And Actuate	ors					
3. To Int	roduce Di	fferent Mater	rials Used For	MEMS					
4. To E	ducate O	n The App	lications Of	MEMS To) Discip	lines Bey	ond Ele	ctrical	And
Mechani	cal Engine	eering.							
Course of	outcomes	•							
After suc	cessful co	ompletion of	this course the	e student w	ill be ab	le to:			
I. Under	stand the	scope, impor	tance and app	lication of 1	miniatur	ized produ	cts		
2. Analys	se and De	monstrate de	sign skills of .	MEMS dev	ices and	products			
3. Under	stand the	design proces	ss ancon and mia	no o atriatan i		n onnligati	~ m		
4. Select	an approp	vitable mater	rial for a MEN	roactuator i	n a give	in applicati	on.		
J. Recoil	imenu a s			as product.					
			COURS	F CONTE	NT				
Introduc	rtion to N	ficro-electro	Mechanical	Semester		V	T		
Systems			, micenamear	Semester	•				
Teaching	g Scheme	:		Examina	tion sch	eme			
Lectures	5: 5:	3 hour	s/week	End sem	ester ex	am (ESE):	:	60 ma	arks
				Duration	of ESE	:		03 ho	urs
				Internal	Session	al Exams (ISE):	40 ma	arks
	Unit–I		No. of Lect	tures: 09 H	ours]	Marks: 1	12	
Introduct	Introduction to piping designing & engineering: Evolution of piping, Manufacturing methods								
Piping r	naterials	and selectio	on, Pipe dime	ensioning,	Schedu	le number	s, Comi	non p	iping
abbrevia	tions, Ma	ajor organiza	ations for sta	andards, C	ommon	ly Americ	an code	in p	iping
ASME/A	NSI, Con	nmon abbrev	iations, Basic	Piping con	ponents	s required.			
					I				
1	Unit–II	•	No. of Lect	tures: 09 H	ours		Marks: 1	2	

Piping Equipment: Horizontal vessels/accumulators, fractionation columns, pumps, heat exchangers, re-boiler, air cooled heat exchanger, cooling towers, heaters/boilers, storage tanks, fractional distillation process and vendor data drawings.

Uses of flow diagrams, process flow diagrams, mechanical flow diagrams, utility flow diagrams piping symbols, line symbols, valve symbols, piping isometrics, general arrangement drawings-sections/elevations/ detail drawings, plot plan procedures.

Unit–III:	No. of Lectures: 08 Hours	Marks: 12				
rpose of P&ID'S, study o	f P&ID'S, stages of developm	nent of P&ID'S, process an				

Purpose of P&ID'S, study of P&ID'S, stages of development of P&ID'S, process and instrumentation diagrams, process equipment's, symbols usage according to industrial practices Purpose of P&ID in process industrial/plants.

Unit–IV:	No. of Lectures: 08 Hours	Marks: 12					
Preparation of Piping Material S	Specification: Valve Material Sp	ecification, Pipe Wall thickness					
Calculations, Preparation of Special Items Datasheets, Pressure Design of Miter Bends – Single							
& Multiple Miters, Pressure Design of Blanks, Branch reinforcement calculations, Overview of							
Technical Queries and Technica	al Bid Evaluations.						

Types of stresses, Significance of forces and moments - Introduction to Stress Analysis - Expansion Loop types, Bellows Types.

Unit–V: No	of Lectures: 08 Hours	Marks: 12
------------	-----------------------	-----------

ASME Engineering: Pipe wall thickness calculations, operating & design pressure, operating & design temperature and maximum allowable operating pressure.

Pipe, elbows, mitre bends, reinforcement pad calculation for branch connections, flanges, blanks, reducers, expansion joints and gaskets as per ASME.

AutoCAD : Drawing Creation (P&ID, PFD, Layouts, and all fabrication Drawings)

Text Books:

1. Rhea and Parisher,

2. G.K. Sahu, Handbook of Piping Design, New Age International Publishers, Delhi

3. A. S. Rangwala, Piping Dynamics, New Age International Publishers.

4. Sanjay Kumar Gupta, Perfect Knowledge of Piping Engineering, Createspace Independent Pub.

Reference Books:

1. Peter Smith, The Fundamentals of piping design, Gulf Publishing co.

2. Liang-Chuan Peng, Tsen-Loong Peng, Pipe Stress Engineering, American Society of Mechanical Engineers.

3. Becht, Charles, IV, Process Piping: The Complete Guide to ASME B31.3, American Society of Mechanical Engineers

4. Mohinder Nayyar, Piping Handbook, McGraw-Hill Handbooks.

KINEMATICS AND THEORY OF MACHINES LAB										
LAB COURSE OUTLINE										
Course	Kinema	tics and Theory of	Machine	s Lab	Short	KIM	Cours	e		
Course (loscriptic	n •			The:	Lau	Coue:			
Mechani	sms form	the basis of any ma	achine and	lit is an a	assembla	ore of rigid	l bodies s	o that they		
move up	move upon each other with definite relative motion. Demonstration exercises are provided with									
wide var	ieties of	transmission elem	ent model	s to und	lerstand	machine k	cinematic	s. Various		
experime	ents with	governors, gyrosc	copes and	balanci	ng mach	ines and	universa	l vibration		
facilities	are availa	able to understand n	nachine dy	ynamics.	U					
Laborat	ory	Hours/week	No. of w	eeks	Total h	ours	Semes	ter credits		
		2	14	4		28		01		
End Sen	nester Ex	am (ESE) Pattern	:	Oral (O	(\mathbf{R})					
Prerequ	isite cour	se(s):			,					
Engineer	ing Mech	anic, Strength of M	Iaterials							
Course of	bjectives	5:								
Objective	es of this	lab are to impart pr	actical kn	owledge	on desig	n and anal	ysis of m	lechanisms		
for the sp	becified ty	pe of motion in a m	nachine. W	vith the st	tudy of r	igid bodies	motions	and forces		
for the tr	ansmissic	on systems, machine	e kinemati	cs and dy	namics	can be wel	l underst	ood.		
Course of	outcomes	:								
Upon suc	ccessful c	ompletion of lab Co	ourse, stud	ent will l	be able to	0:				
1. Distin	guish kine	ematic and kinetic r	notion.							
2. Identif	y the basi	ic relations between	n velocity,	and acce	eleration.					
3.Use gra	aphical an	nd analytic methods	to study t	he motio	n of a pl	anar mecha	anism			
4. design	1 linkage,	cam and gear mech	nanisms fo	r a given	motion	or a given	input/out	put motion		
or force i	relationsh	ip.	. 1.0					1 0		
5. analyz	the mo	tion and the dynam	nical force	es acting	on mec	hanical sy	stems co	mposed of		
linkages,	gears and	a cams.								
		LAB	B COURS	E CONT	TENT					
Kinemat	tics and T	Theory of Machine	es	Semeste	er:		V	I		
Teaching	Teaching Scheme: Examination scheme									
Practica	l:	2 hours/weel	k	End sen	nester e	xam (ESE):	25 marks		
				Internal Continuous Assessment (ICA):			essment	25 marks		
ASSIGN 1) S	ASSIGNMENTS: 1) Study of Kinematics of Four Bar, Slider Crank, Crank Rocker and Oscillating cylinder Mechanism									

2) Study of Different Mechanisms.

DRAWING SHEETS:

- 1) ICR and Relative Velocity.
- 2) Relative Acceleration and Coriolis Acceleration.

- 3) Cam and Follower Motions.
- 4) Balancing of Rotating and Reciprocating Masses.

EXPERIMENTS:

- 1. To determine the characteristics of Centrifugal Governor and Find its Sensitivity and Stability.
- 2. To verify the principle of working of gyroscope
- 3. To determine mass moment of inertia of compound pendulum.

4. To determine mass moment of inertia of Rigid body by using Bifilar suspension or Trifilar suspension method.

Text Books:

- 1. Cleghorn W. L., Mechanisms of Machines, Oxford University Press, 2005.
- 2. Robert L. Norton, Kinematics and Dynamics of Machinery, Tata McGraw Hill, 2009.
- 3. Ratan S. S., Theory of Machines, 4th edition, Tata McGraw Hill, 2014.
- 4. Khurmi R. S, Theory of Machines, 14th edition, S. Chand & Co. Ltd., 2005.
- 5. Singh V. P., Theory of Machines, Dhanpat Rai & Co.
- 6. Phakatkar H. G., Theory of Machines I
- 7. Phakatkar H. G., Theory of Machines II
- 8. Bansal R. K., Theory of Machines, Laxmi Publications.
- 9. Singh Sadhu, Theory of Machines, Pearson Publication.

Reference Books:

- 1. Thomas Bevan, Theory of Machines, 3rd edition, CBS Publishers & Distributors, 2005.
- 2. Ghosh A. and Mallick A. K., Theory of Mechanisms and Machines, Affiliated East-West Pvt. Ltd, New Delhi, 1988.
- 3. Lal Jagdish, Theory of Mechanisms & Machines, Metropoliton Book Co.
- 4. Shingley J. E. And Uicker J. J., Theory of Machines and Mechanisms, McGraw45 Hill International Book Co.
- 5. Ballaney P. L., Theory of Machine, Khanna Publication.

Guide lines for ICA:

Students must submit ICA in the form of journal. Each assignment should be well documented. Faculty in charge will assess the assignments continuously and grade or mark each assignment on completion date declared for each assignments.

Guidelines for ESE:

ESE will be based on the laboratory assignments submitted by the students in the form of journal.

	MANUFACTURING TECHNOLOGY LAB									
	25 0		<u>B COUE</u>	RSE OUTI		2.00	~			
Course	Manufa	cturing Technolog	gy Lab		Short	MT	Cours	e		
Title:	1				Title: Code:					
	descriptio	on:		<u> </u>	1 1	. 1 1	C	ſ		
This cou	This course provide student comprehensive study of advanced technology of manufacturing.									
Ine will provide practical knowledge of different CNC machine, CNC mining machine and part										
concents	programming using on these machines. The course will also enlighten students with different									
handling	concepts like lean manufacturing, 5D manufacturing and its uses, tool life, tool wear, material bandling devices etc.									
Laborat	Laboratory Hours/week No. of weeks Total hours Semester credits									
	v	02		14		28		0	1	
End Sen	nester Ex	am (ESE) Pattern	:	Oral (OR)		1			
Prerequ	isite cour	:se(s):	-		/					
Manufac	turing pro	ocesses, Workshop								
Course	objective	s:								
To help	students	understand studer	nt differ	ent advanc	ced man	ufacturing	process	es	used in	
industry	to conve	ert raw material in	to finisł	ned produc	rt. To ir	npart pract	ical kno) SW	ledge of	
manufac	turing pro	ocesses like 3D mar	nufacturi	ing, CNC n	nachine,	CNC milli	ng, con	cep	ot of lean	
manufac	turing, too	ol life and factors in	ıfluencir	ng it.						
Course of	outcomes	:								
Upon suc	ccessful c	completion of lab Co	ourse, st	udent will b	be able to	0:				
Students	will be to	understand the diff	erent ad	vanced pro	duction t	echnologie	s. They	wil	ll be able	
to perfor	m and ur	nderstand different	machini	ng operatio	on using	CNC mac	hine, C	NC	milling	
machine.	. The stuc	lents will understan	d conce	pt of tool l	ife, tool	wear, lean	manufa	ctu	ring and	
different	material	handling devices us	sed in in	dustry.						
		TAD		SE CONT	TENT					
Manufa	cturing T	LAL Sechnology		Somostor	. 121 \ 1	VI				
Tanula	cturing I	cennology		Evenine	• tian aak					
Teaching D	g Scheme			Examina	uon sch			25	·	
Practica	1:	2 hours/wee	K	End seme	ester exa	am (ESE):		25	marks	
				Internal	Continu	ous Assess	ment	25	marks	
				(ICA):						
1) Design and fabrication of willing fintered										
 Design and fabrication of milling fixture Demonstration of CNC machine 										
 2) Demonstration of UNU machine 2) Job programming and manufacturing on CNC milling or CNC Lathe machine 										
5) Job programming and manufacturing on CNC milling of CNC Lathe machine.										
(-4) Demo	onstration	of 3D manufacturi	ng proce	se process						
6) Introd	duction ar	nd demonstration of	lean ma	anufacturin	g proces	s in manufa	cturing	tec	hnology	
7) Demo	onstration	of various material	l handlir	ng devices i	used in n	nanufacturi	ng indu	strv	V.	
8) Demo	onstration	of different tool w	ear and f	factor affec	ting tool	life.	0			
6) Demonstration of different tool wear and factor affecting tool life.										
Text Books:

1. Element of Workshop Technology Volume I and II -Hajara Chaudhary and Bose S.K., Asia Publishing House.

- 2. Production Technology Volume I and II P.N.Rao, Tata McGraw Hill Publication.
- 3. Production Technology- R.K.Jain, Khanna Publications.
- 4. Production Technology- P.C.Sharma, Khanna Publication.
- 5. Workshop Technology-Chapman W.A.J., ELBS Publication.
- 6. Production Technology- HMT, Tata McGraw Hill Publication.

Reference Books:

- 1. Kalpak Jain and Schmid, Manufacturing processes for engineering materials (7th Edition)-Pearson India, 2014.
- 2. Taha H. A., Operations Research, 6th Edition, Prentice Hall of India, 2003.
- **3.** Shenoy G.V. and Shrivastava U.K., Operations Research for Management, Wiley Eastern, 1994.
- **4.** Mikell P. Groover, Fundamentals of Modern Manufacturing: Materials, Processes, and Systems
- 5. Degarmo, Black & Kohser, Materials and Processes in Manufacturing
- **6.** Materials and processes in manufacturing , J T Black, Ronald A. Kosher, De Garmos, , Wiley student edition

Guide lines for ICA:

Students must submit ICA in the form of journal. Each practical/assignment should be well documented. Faculty in charge will assess the practical/assignments continuously and grade or mark each practical/assignment on completion date declared for each assignments.

Guidelines for ESE:

The End Semester Examination (ESE) (Oral Exam) will be based on the above mentioned assignment/practical and theory topics mentioned in syllabus of manufacturing processes. Evaluation will be based on paper work.

		MA	TER	IAL ENGINEER	ING LA	В				
			LAB	COURSE OUTI	LINE	1				
Course	Materia	l Engineering	Lab		Short	ME Lab	Course	5		
Title:					Title:		Code:			
Course of	descriptio	on:	1 / 1	1.00	1.	T. 1 '	1 1			
This lab includes the practical's related to different testing machines. It also includes preparation and study of different microstructures and introduction of furnace.										
Laborat	ory	Hours/week		No. of weeks	Total l	nours	Semest	ter credits		
		2		14	4 28 1		1			
End Sen	nester Ex	am (ESE)	•							
Pattern:										
Prerequisite course(s):										
Engineer	ring Chen	nistry and Engi	neeri	ng Physics						
Course of	objective	5:								
(i) To understand the measurement of mechanical properties of materials										
(ii) To understand the deformation behaviour of materials										
(iii) To u	(iii) To understand the Microstructure and its co-relation with the properties.									
0										
Course of	outcomes	•	h Ca		ha ahla 4					
Upon suc	who has	ompletion of la	$\frac{10 \text{ CO}}{10 \text{ CO}}$	urse, student will to	be able t	0: dometand th	<u> </u>	momont of		
Students who have undergone the course will be able to understand the measurement of										
mechanical properties of materials and will be able to characterize the dynamic behavior of										
meenam	eur system	15								
LAB COURSE CONTENT										
Materia	l Enginee	ering Lab		Semester:		VI				
Teaching	g Scheme	2:		Examination sc	cheme					
Practica	l:	2		End semester e	xam (ES	SE):		25 marks		
		hours/w	eek							
				Internal Contin	nuous A	ssessment (ICA):	25 marks		
				÷						
1. Tensil	e test, to	compare tensile	e strei	ngth, yield point ar	nd ductil	ity of three	metallic	materials.		
2. Brinel	l or Poldi	hardness test of	on ste	el, cast iron, brass						
3. Rockwell and Rockwell superficial hardness measurement.										
4. Izod or Charpy impact test to compare impact values of cast iron and mild steel or aluminium										
and brass										
5. Measurement Non-destructive tests: Dye penetrant test, Magnetic particle testing, ultrasonic										
testing, e	ddy curre	ent test. (any tw	/O)	C (11 1 1						
6. Micro	Specimer	n Preparation a	nd us	e of metallurgical	microsc	ope		haid staal		
/. Sludy	y and u	awing inicros	structi	ure of fiffid stee	ei, meai	um carboi	i, euleci	.old steel,		
8 Study	and draw	ing microstruc	ture c	f white malleable	orav at	nd ductile o	ast iron c	or any four		
non-ferro	o. Study and drawing microstructure of white, malleable, gray and ductile cast from or any four									
9. Jomin	v Harden	ability test								
7. 50mm	Jinutuelle									

Syllabus for Third Year Engineering (Mechanical Engineering) w.e.f. 2020 – 21 AICTE

10. Demonstration of Annealing, Normalising and Hardening of medium carbon steel specimens and measurements of hardness and drawing microstructures.

Note: Perform any Eight from above list

Text Books:

1. W. D. Callister, 2006, "Materials Science and Engineering-An Introduction", 6th Edition, Wiley India.

2. Kenneth G. Budinski and Michael K. Budinski, "Engineering Materials", Prentice Hall of India Private Limited, 4th Indian Reprint, 2002.

3. V. Raghavan, "Material Science and Engineering', Prentice Hall of India Private Limited, 1999.

4. U. C. Jindal, "Engineering Materials and Metallurgy", Pearson, 2011.

Reference Books:

1. Degarmo's "Materials and processes in manufacturing", by J.T. Black, Ronald A. Kosher, Willey student edition.

2. "Material Science and Metallurgy for Engineers", by V. D. Kodgire, Everest Publishing House. Pune

3. "Introduction to Engineering Materials", by B. K. Agrawal, Tata Mcgraw Hill, New Delhi.

4. "An Introduction to Physical Metallurgy", by S.H. Avner, Tata Mcgraw Hill, New Delhi.

5."Fundamentals of modern manufacturing materials, processes and systems", by Mikell P. Groover, Wiley student edition, New Delhi.

6. "Material Science and Metallurgy", by Parashivamurthy K. I., Pearson Publication

7. "Material Science and Metallurgy", by U. C. Jindal, Pearson Publication

8. "Introduction to Materials Science for Engineers", by James F. Shackleford & Madanapalli K. Muralidhara, Pearson Publication

9. "A textbook of Material Science and Metallurgy", by O. P. Khanna, Dhanpat Rai Publication

Guide lines for ICA:

ICA will be based on practical assignments submitted by the student in the form of journal. Evaluation will be based on paper work.

Minor Project										
LAD COUDSE OUTLINE										
Course	Minor F	Project	B COURSE OUT	Short	MPROJ	Cour	se			
Title:		10,000		Title:		Code	:			
Course of	lescriptio	n:		1						
Minor pr	oject repi	esent the culminati	on of study toward	ds the Ba	chelor of E	Inginee	ring	degree.		
The mine	The minor project offers the opportunity to apply and extend material learned throughout the									
program. The emphasis is necessarily on facilitating student learning in technical, project										
management and presentation spheres.										
Laborat	ory	Hours/week	No. of weeks	Total hours		semester creuits		credits		
	6		14		84		3			
End Sen	nester Ex	am (ESE)	Oral (OR)							
Pattern:	• • • •									
Prerequ	isite cour	'se(s):								
Course	highting									
	nderstand	the basic concents	& broad principles	of proje	cts					
2. To u	nderstand	the value of achiev	ing perfection in p	roject im	ols.	on & co	omn	letion		
3. To a	oply the t	heoretical concepts	to solve problems	s with te	amwork an	d multi	idisc	ciplinary		
appro	bach.	I I I I I I I I I I I I I I I I I I I	I I I I I I I I I I I I I I I I I I I					r ··· J		
4. To d	emonstrat	te professionalism	with ethics; presen	nt effect	ive commu	nicatio	n sk	cills and		
relate	e engineer	ing issues to broad	er societal context.							
Course of	outcomes	:								
Upon suc	ccessful c	ompletion of lab Co	ourse, student will	be able t	0:					
1. Dem	onstrate a	sound technical kn	owledge of their se	elected p	roject topic	•				
2. Unde	ertake pro	blem identification,	formulation and se	olution.			_			
5. Desig	gn engine	aincoring project	omplex problems u	unizing a	a systems ap	pproact	1.			
4. Colle	onstrate f	e knowledge skill	s and attitudes of a	professi	onal engine	er				
J. Dem		ic knowledge, skin		protessi	onai engine	CI.				
		LAF	B COURSE CON	TENT						
Minor P	roject		Semester:			VI				
Teaching	g Scheme	:	Examination scheme:							
Practica	l:	6 hours/week	End semester exa	exam (ESE): (OR)			25	marks		
			Internal Continu	ious Ass	essment (IC	CA):	50	marks		
						- /-				
In contin	In continuation with Minor Project (Stage -1) at Semester $-V$ by the end of Semester $-VI$ the									
student should complete implementation of ideas as formulated in Minor Project (Stage $-$ D). It										
may involve coding, experimentation, data analysis within realistic constraints such as										
economi	economic, environmental, social, ethical, health and safety, and sustainability. It may also									
include t	include testing, results and report writing. Each student group should submit complete project									
report at the end of Semester-VI in the form of Hard bound. Assessment for the project shall										
also include presentation by the students.										

Each student group is required to maintain separate log book for documenting various activities of the project.

Suggestive outline for the complete project report is as follows.

Abstract Chapter 1. Introduction

- Declement d
- Background
- Motivation
- Problem Definition
- Scope
- Objective
- Organization of Report
- Summary

Chapter 2. Literature Review

Chapter 3. Design & development / Experimentation & observation / Survey & Data collection

Chapter 4. Testing, Analysis & Validation / Results & discussions / Data interpretation

Chapter 5. Conclusion & Future Work

Bibliography

Index

Appendix

Guide lines for ICA:

The Internal Continuous Assessment (ICA) for project shall be based on continuous evaluation of students' performance, active participation, knowledge / skill acquired throughout semester and presentation by the students. The assessment shall be done jointly by the guide and departmental committee. A three-member departmental committee including guide, appointed by Head of the department, shall be constituted for the assessment. The assessment for Minor Project in Semester – VI shall be as per the guidelines given in Table – B.

	Table – B								
		Assessment by Guide				Assessment by Departmental Committee			
Sr. No.	Name of the Student	Attendance / Participation	Implementation	Results	Report	Depth of Understanding	Presentation	Demonstration	Total
	Marks	5	5	5	5	10	10	10	50

Guidelines for ESE:

In End Semester Examination (ESE), the student may be asked for presentation / demonstration and questions on Project. Evaluation will be based on answers given by students in oral examination.

Internship

Internship is a mandatory and non-credit course. It is mandatory for all admitted students to undergo Internship during the degree course. The course shall be of THREE weeks duration during summer vacation after Semester - VI. Following are the intended objectives of internship training:

- Will expose Technical students to the industrial environment, which cannot be simulated in the classroom and hence creating competent professionals for the industry.
- Provide possible opportunities to learn, understand and sharpen the real time technical / managerial skills required at the job.
- Exposure to the current technological developments relevant to the subject area of training.
- Experience gained from the 'Industrial Internship' will be used in classroom discussions.
- Create conditions conducive to quest for knowledge and its applicability on the job.

Students shall choose to undergo Internship / Innovation / Entrepreneurship related activities for Internship. Students shall choose either to work on innovation or entrepreneurial activities resulting in start-up or undergo internship with industry/ NGO's/ Government organizations / Micro / Small / Medium enterprises / academic institutions / research institutions. In case student want to pursue their family business and don't want to undergo internship, a declaration by a parent may be submitted directly to the Department Head / TPO.

During the last year of FOUR-year Bachelor of Engineering course the student should take project work, as specified in the curriculum, based on the knowledge acquired by the student during the degree course and during Internship. The project work provides an opportunity to build a system based on area where the student likes to acquire specialized skills. The work may also be on specified task or project assigned to the student during Internship.

The internship activities and list of sub-activities for Internship are as under.

- Innovation / Entrepreneurship:
 - Participation in innovation related Competitions for eg. Hackathons Robocon, Baha, IIT TechFest, Chemcon, Dipex etc
 - o Development of new product/ Business Plan/ registration of start-up
 - Participation in Entrepreneurship Program of THREE weeks duration
 - Online certification courses by SWAYAM, NPTEL, QEEE etc.
 - Working for consultancy/ research project within the institutes
 - Training on Software (As per the need of respective branch);
 - Field Survey / Case Study
 - Work experience at family business
- Internship:
 - Internship with Industry/Govt. / NGO/ PSU/ Any Micro/ Small/ Medium enterprise/ academic institutions / research institutions
 - Online Internship
- Rural Internship
 - Any Long Term Goals may be carried out by students in teams:
 - Prepare and implement plan to create local job opportunities.
 - Prepare and implement plan to improve education quality in village.

Syllabus for Third Year Engineering (Mechanical Engineering) w.e.f. 2020 – 21 AICTE

- Prepare an actionable DPR for doubling the village Income.
- Developing Sustainable Water Management system.
- Prepare and Improve a plan to improve health parameters of villagers.
- Developing and implementing of Low Cost Sanitation facilities.
- Prepare and implement plan to promote Local Tourism through Innovative Approaches.
- Implement/Develop Technology solutions which will improve quality of life.
- Prepare and implement solution for energy conservation.
- Prepare and implement plan to Skill village youth and provide employment.
- Develop localized techniques for Reduction in construction Cost.
- Prepare and implement plan of sustainable growth of village.
- Setting of Information imparting club for women leading to contribution in social and economic issues.
- Developing and managing efficient garbage disposable system.
- Contribution to any national level initiative of Government of India. For eg. Digital India/ Skill India/ Swachh Bharat Internship etc.

Faculty Mentor/Supervisors have to play active roles during the internship and minimum 20 students are to be supervised by each faculty mentor or as per the departmental strength. Mentor shall be responsible for selection of Internship activities by the student under his/her supervision and shall avoid repetition of activities by the student. The college / Institute shall facilitate internship for the students.

Every student is required to prepare a file for Internship containing documentary proofs (daily training diary, comprehensive report and completion certificate) of the activities done by him/her. The students should record in the daily training diary the day to day account of the observations, impressions, information gathered and suggestions given, if any. It should contain the sketches & drawings related to the observations made by the students. The daily training diary should include Date, Time of Arrival, Time of Departure, Main points of the day. The daily training diary should be signed after every day by the supervisor/ in charge of the section where the student has been working.

After completion of Internship, the student should prepare a comprehensive report to indicate what he / she has observed and learnt in the training period. The report should include Internship Objectives (in measurable terms), Internship Activities, and Internship Outcome.

The completion certificate should be signed by the supervisor / in charge of the section where the student has been working with performance remark as Satisfactory / Good / Excellent.

The evaluation of Internship shall be in Semester – VII. The evaluation shall be done by expert committee constituted by the concerned department including Department Head/ TPO/ faculty mentor or guide. It should be evaluated on the basis of the following criteria:

- Regularity in maintenance of the diary.
- Adequacy & quality of information recorded.

- Originality.
- Adequacy and purposeful write-up.
- Practical applications, relationships with basic theory and concepts taught in the course.
- Skill / knowledge acquired

Hence the satisfactory completion of Internship shall be submitted to the university at the end of Semester - VIII of FOUR year Bachelor of Engineering course. Only after successfully completion of Internship, Internship should be printed in the final year mark sheet as COMPLETED.