Kavayitri Bahinabai Chaudhari NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Final Year Engineering

(Electronics and Telecommunication Engineering)

Faculty of Science and Technology

SYLLABUS STRUCTURE Semester – VII & VIII W.E.F. 2021 – 22

Syllabus Structure for Final Year Engineering (Semester – VII) (Electronics and Telecommunication Engineering) (w.e.f. 2021 – 22)									
(As per AICTE Guidelines)									
	Taashing Sahama	Ev	aluation Scheme						
	Leaching Scheme								

		Teaching Scheme									
			Teaching	Scheme		Theory		Pra	ctical		
Name of the Course	Group	Theory	Tutorial	Practical						Total	Credits
		Hrs /	Hrs /	Hrs /	Total	ISE	ESE	ICA	ESE	Total	
		week	week	week							
Digital Signal Processing	D	3	-	-	3	40	60	-	-	100	3
Professional Elective Course – III	E	3	-	-	3	40	60	-	-	100	3
Professional Elective Course – IV	E	3	-	-	3	40	60	-	-	100	3
Open Elective Course – III	F	3	-	-	3	40	60	-	-	100	3
Communication Lab - I	D	I	-	2	2	-	-	25	25 (PR)	50	1
Digital Signal Processing Lab	D	1	-	2	3	-	-	25	25 (PR)	50	2
Project (Stage – I)	G	I	-	12	12	-	-	50	50 (OR)	100	6
Essence of Indian Traditional	П										
Knowledge	п	-	-	-	-	-	-	-	-	-	-
		13		16	29	160	240	100	100	600	21

ISE: Internal Sessional Examination

ESE: End Semester Examination

ICA: Internal Continuous Assessment

Professional Elective Course – III			Professional Elective Course – IV	Open Elective Course – III		
1	Fiber Optic Communication	1	Satellite Communication	1	Artificial Intelligence and Machine Learning	
2	Speech and Audio Processing	2	Digital Image and Video Processing	2	Big Data Analysis	
3	Nanoelectronics	3	Mixed Signal Design	3	Mechatronics	

Syllabus Structure for Final Year Engineering (Semester – VIII) (Electronics and Telecommunication Engineering) (w.e.f. 2021 – 22) (As per AICTE Guidelines)

	Group		Toophing	Sahama			Eva	aluation Scl	neme		
			reaching	Scheme		Theory		Pra	ctical		
Name of the Course		Theory Hrs / week	Tutorial Hrs / week	Practical Hrs / week	Total	ISE	ESE	ICA	ESE	Total	Credits
Computer Network	D	3	-	-	3	40	60	-	-	100	3
Professional Elective Course – V	E	3	-	-	3	40	60	-	-	100	3
Professional Elective Course – VI	E	3	-	-	3	40	60	-	-	100	3
Open Elective Course – IV	F	3	-	-	3	40	60	-	-	100	3
Communication Lab - II	D	-	-	2	2	-	-	25	25 (OR)	50	1
Computer Network Lab	D	2	-	2	4	-	-	25	25 (PR)	50	3
Project	G		-	6	6	-	-	50	50 (OR)	100	3
		14	0	10	24	160	240	100	100	600	19

ISE: Internal Sessional Examination

ESE: End Semester Examination

ICA: Internal Continuous Assessment

Professional Elective Course – V			Professional Elective Course – VI	Open Elective Course – IV		
1	Microwave Theory and Technique	1	Embedded System	1	Automotive Electronics and Electric Vehicle	
2	Adaptive Signal Processing	2	Mobile Communication and Network	2	Cyber Security	
3	Antenna and Wave Propagation	3	High Speed Electronics	3	Robotics	

Kavayitri Bahinabai Chaudhari NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Final Year Engineering (Electronics and Telecommunication Engineering) Faculty of Science and Technology

SYLLABUS Semester – VII W.E.F. 2021 – 22

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **4** of **69**

	Digital Signal Processing								
			COURSE OU	<u> FLINE</u>		_			
Course	Digital S	Signal Processing		Sho	t DSP	Course	ļ,		
Title:				Title	:	Code:			
Course	descriptio	n:							
Digital	Signal Pr	ocessing (DSP) is	concerned w	1th the rep	presentation,	transform	ation and		
manipula	ation of s	ignals on a compu	ter. After half	a century	advances, L	SP has b	ecome an		
importar	it field, a	nd has penetrated	a wide range	of applica	ion systems.	, such as	consumer		
dramatia	cs, digital	of the processing of	nedical imagin	ng, power a	ipplications a	and so on	. With the		
importar	importance and role of DSP is to accelerate and expand								
	ice and to	Hours/week	No. of weeks	niu. S Tota	lhours	Semest	er credits		
Lecture		03	14	, 100	<u>//</u>	Semest			
Duonogu	isita aann		14		42		05		
Frerequ	Isite cour	se(s):	store Cianal a	nd Crustam					
Course	ige of Ma	mematics, control sy	/stelli, Signal a	ind System.					
The obje	objectives								
1 To int	roduce fin	ding DET IDET on	d EET of disor	oto cional					
1.10 m	ion IIP fi	lunig DFT, IDFT an Iter form analog filt	a FFT OF UISCI	ete signat.					
3 To con	nvert IIR f	filter to FIR filters u	sing various te	chniques					
4 To int	roduce fin	ite world length effe	ect in dioital fi	lter and mu	tirate signal	nrocessing	7		
5 Study	of DSP n	rocessor and its appl	ication		in all signal	processing	>.		
5. Study		toeessor and its upp	ioution.						
Course	outcomes	•							
After suc	ccessful co	ompletion of this con	urse the studen	t will be ab	le to:				
1. Able t	o understa	and findings the DF	Γ, IDFT and F	FT of discre	te signal.				
2. Under	stand the	concept of analog fi	lter and design	of IIR digi	tal filters.				
3. Under	stand the	need and design of I	FIR digital filte	ers.					
4. Analy	ze finite w	vord length effects o	n signal and r	nultirate sig	nal processin	ıg			
5. Under	stand Dig	ital Signal Controlle	ers and their A	pplications	-	-			
		0	COURSE CON	NTENT					
Digital	Signal Pro	ocessing	Sei	nester:	VI	Ι			
Teachin	g Scheme	:	Ex	amination	scheme				
Lectures	s: 03	3 hours/weel	k En	d semester	exam (ESE)	:	60 marks		
			Du	ration of E	SE:		03 hours		
			Int	ernal Sessi	onal Exams	(ISE):	40 marks		
	Unit–I	: No.	of Lectures:	09 Hours	I	Marks: 12			
Discrete	Fourier '	Transform & Fast	Fourier Tran	sform	-				
DSP Pre	DSP Preliminaries								
Discrete time signals: Sequences; representation of signals on orthogonal basis, Basic elements									
of DSP and its requirements, advantages of Digital over Analog signal processing.									
Definitio	on and Pro	perties of DFT, IDF	T, Circular co	nvolution o	f sequences u	sing DFT	and IDFT		

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **5** of **69**

(Maximum N=8). Twiddle factor. Fast Fourier Transforms (FFT), Radix-2 decimation in time and decimation in frequency FFT algorithms, inverse FFT, and introduction to composite FFT.									
		2							
Unit–II:	No. of Lectures: 09 Hours	Marks: 12							
IIR Digital Filters Concept of analog filter design (required for digital filter design), Design of IIR filters from analog filters by impulse invariance method, Bilinear transformation method. IIR filter realization using direct form, cascade form, parallel form and transposed form. Butterworth filter, Chebyshev, Elliptic Approximation Lowpass, High pass, Bandpass and Bandstop filters design using frequency transformation (Design of all filters using Lowpass filter)									
Unit–III:	No. of Lectures: 08 Hours	Marks: 12							
Advantages and disadvantages of FIR over IIR filter, Minimum Phase, Maximum Phase, Mixed Phase and Linear Phase Filters. Location of the zeros of linear phase FIR filters. Design of FIR filters using Window techniques (Rectangular, Hamming, Hanning, Blackmann, Kaiser), Design of FIR filters using Frequency Sampling technique, Comparison of IIR and FIR filters. Gibbs phenomenon. FIR filters realization using direct form, cascade form and linear phase form.									
1									
Unit-IV:	No. of Lectures: 08 Hours	Marks: 12							
Unit–IV: Finite Word Length effects Quantization, truncation and error, Product quantization er oscillations, Overflow limit c of IIR digital filters, Finite w Multirate DSP, Introduction Application of Multirate sign processing and Radar signal	No. of Lectures: 08 Hours in Digital Filters rounding, Effects due to truncation a rror, Coefficient quantization error, Z cycle oscillations, Scaling. Quantizat ord length effects in FIR digital filte to Up sampler, Down sampler and tw nal processing in communication, Mu processing.	Marks: 12 and rounding, Input quantization Zero-input limit cycle ion in Floating Point realization rs. vo channel filter bank, usic processing, Image							
Unit–IV: Finite Word Length effects Quantization, truncation and error, Product quantization er oscillations, Overflow limit c of IIR digital filters, Finite w Multirate DSP, Introduction t Application of Multirate sign processing and Radar signal	No. of Lectures: 08 Hours in Digital Filters rounding, Effects due to truncation a rror, Coefficient quantization error, 7 cycle oscillations, Scaling. Quantizat ord length effects in FIR digital filte to Up sampler, Down sampler and tw al processing in communication, Mu processing.	Marks: 12 and rounding, Input quantization Zero-input limit cycle ion in Floating Point realization rs. vo channel filter bank, usic processing, Image							
Unit–IV: Finite Word Length effects Quantization, truncation and error, Product quantization er oscillations, Overflow limit c of IIR digital filters, Finite w Multirate DSP, Introduction of Application of Multirate sign processing and Radar signal p Unit–V:	No. of Lectures: 08 Hours in Digital Filters rounding, Effects due to truncation a rror, Coefficient quantization error, Z cycle oscillations, Scaling. Quantizat ord length effects in FIR digital filte to Up sampler, Down sampler and tw al processing in communication, Mu processing.	Marks: 12 and rounding, Input quantization Zero-input limit cycle ion in Floating Point realization rs. vo channel filter bank, usic processing, Image Marks: 12							

Text Books:

Text Books:
1. S. Salivahanan, "Digital Signal Processing", McGraw Hill Education; 3rd edition, 2017.
2. P. Ramesh Babu, "Digital Signal Processing", Scitech Publications (India) Pvt.Ltd., 6th edition, 2014.
3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education
4. Tarun Kumar Rawat, Digital Signal Processing", Oxford University Press, 2015.
Reference Books:
1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.
2. Sanjit K. Mitra , Digital Signal Processing – A Computer Based Approach – 4th Edition McGraw Hill Education (India) Private Limited.
3. Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing", 2nd Edition, Pearson Education.
4. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", McGraw Hill Second Edition.

5. L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2006.

6. TMS320C67XX User manual: www.ti.com .

Fiber Optic Communication (Professional Elective Course – III)									
		11)	COURSE	OUTLIN	I <u>SC – III</u> IE	.)			
Course Title:	Fiber O	ptic Communi	cation		Short Title:	FOC	Course Code:	2	
Course	lescriptio	n:				I			
This cou	rse provid	es knowledge a	about optical fi	ber techno	ology that	t emerged	as major	innovation	
in teleco	mmunicat	ion.							
Lecture		Hours/week	No. of w	veeks	Total b	nours	Semest	er credits	
		03	1	4		42		03	
Prerequ	isite cour	se(s):			•		•		
Knowledge of Light wave theory, Basic concept of analog and digital Communication									
Course of	Course objectives:								
The main	n objective	e of this course	is						
1. To in	troduce st	udent with ligh	nt ray theory of	transmiss	sion and	its applicat	ion in opt	ical	
comr	nunicatior	1.							
2. To u	nderstand	the constructio	n of fiber and s	signal deg	radation	in fiber.			
3. To st	udy vario	us optical source	es and optical	detectors.					
4. To u	nderstand	Optical link de	sign for fiber o	ptics.					
5. To st	udy Optic	al Switching a	nd networking	technolog	y concep	ots.			
~									
Course	outcomes								
After suc	cessful co	mpletion of th	is course the st	udent will	be able	to:	1	• .•	
I. Able t	o know th	e fundamentals	s of Light theor	$\frac{1}{1}$ y and its a	application	on in optica	al commu	nication.	
2. Able t	o know th	e construction	of various opti	cal fiber a	nd cause	s of signal	degradati	on in fiber	
3. Experi	ience with	the Knowledg	e of working o	f various (optical so	ources and	optical de	etectors.	
4. Able t	o know at	out Optical lin	k design for fit	or optics.	aultin a ta	ahmalaar			
5. Devel	op the kno	wiedge on Opt	lical Switching	and netw	orking te	chnology.			
			COUDSE	CONTEN	1 T				
Fibor O	ntia Com	municotion	COURSE	Someste	N I	VI	т		
		numcation		Semeste	· ·		.1		
Teachin	g Scheme	•		Examin	ation sc	neme			
Lectures	s: 03	3 hours/	week	End sen	nester ex	am (ESE)	:	60 marks	
				Duratio	n of ESI	E:		03 hours	
				Interna	l Session	al Exams	(ISE):	40 marks	
Unit–I: No. of Lectures: 09 Hours Marks: 12							2		
Optical	Fibers-St	ructures Wav	e guiding and	l Fabrica	tion				
Introduction to vector nature of light, Ray model, wave model. Block diagram of Optical									
communication system, Light system components, Optical transmitters, optical Receivers									
Advantage and Disadvantage of OFCS over other communication systems.									
Ray theory of transmission and concept of acceptance angle and Numerical Aperture (Numerical									
based on	based on Ray theory),								
Propagat	Propagation of light, Meridonial and skew propagation,								

Wave theory of optical propagation: cut – off wavelength. Group velocity and Group delay.									
Fabrication methods of fibers –	OVD, MCVD, VAD Process.								
Unit–II:	No. of Lectures: 09 Hours	Marks: 12							
Optical Fibers and Signal De	gradation								
Different types of optical fibers	}-								
Fiber profiles-Step index fibers,	Graded index fibers								
Fiber modes –Optical modes No	ormalized frequency Single mode	step index, Multimode step							
index, Multimode Graded index (Numerical on mode theory).									
Signal degradation on optical fiber due to dispersion and attenuation.									
Attenuation, Absorption, Absor	rption due to atomic defects, Extri	insic Absorption ,Intrinsic ,							
Absorption ,scattering loss- Lin	ear and Nonlinear loss, bending lo	osses.							
Signal distortion in optical fiber	: Information capacity determinat	tion,							
Material dispersion, waveguide	dispersion, intermodal dispersion	, Pulse broadening in Graded							
Index fiber (Numerical on puls	e dispersion and pulse broadening	<i>(f</i>)							
	No. of Lectures: 08 Hours	Marks: 12							
Optical Sources and Detectors									
Sources : Factors or Characteris	stics for their selection in OFCS,								
Light Emitting diodes: Surface	e emitter, LEDS, Edge emitter LE	DS, LED operating							
Lagan diada: Lagan principlag	ins of surface and Edge emitters,	innation I again atrin anomanter							
Laser diode: Laser principles, s	semiconductor laser diode, Hetero	Junction Laser, stripgromentry							
Detector nonematorial Cutoff una	valer oth Quantum offician ov Da	an ancivity and of Despense							
(Numerical based on detector	vereingili ,Qualituili efficiency, Re	sponsivity, speed of Response							
Detectors: Characteristics or fa	stors for their Selection D N phot	to diada DIN Photo diada							
Avalanche photodiode (No Nu	merical on Detectors)								
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12							
Optical Receivers.									
Optical link design- Power budy	get, Rise time budget.(No Numeri	cal)							
Sources of power penalties, M	Iodal Noise, Dispersion Broadening	ng, Mode partition noise,							
Frequency Chipring. BER calcu	lation, Quantum limit.(Derivation	n not required and No							
Numerical)									
Fiber Splicing-Fusion Splicing,	V-groove Splicing. Fiber Connec	tors- ST,SC,MTRJ(only							
Overview)									
Optical Fiber Measurements:	Measurement of Attenuation, refu	ractive index. Optical time							
domain reflectometry (OTDR).		-							
Unit–V:	No. of Lectures: 08 Hours	Marks: 12							
Advanced Optical Systems									
Advanced Techniques: Wavel	ength Division Multiplexing (WD	M), Dense Wavelength							
Division Multiplexing (DWDM).									
WDM components-2*2 Fiber 0	Coupler, Star Coupler, Optical Iso	lator.							
Optical amplifiers,- Semicond	uctor Amplifier, Raman Amplifier	r, EDFA.							

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **9** of **69** **Optical Networks-** SONET (Synchronous Optical Network)-Transmission format and SONET Ring.

Text Books:

1. J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed. 2013 (Indian Edition).

2. T. Tamir, Integrated optics, (Topics in Applied Physics Vol.7), Springer-Verlag, 1975.

3. J. Gowar, Optical communication systems, Prentice Hall India, 1987.

4. S.E. Miller and A.G. Chynoweth, eds., Optical fibers telecommunications, Academic Press, 1979.

5. Govind Agrawal, Nonlinear fibre optics, Academic Press, 2nd Ed. 1994.

6. Govind Agrawal, Fiber optic Communication Systems, John Wiley and sons, New York, 19977. F.C. Allard, Fiber Optics Handbook for engineers and scientists, McGraw Hill, New

York (1990).

8.Joseph C palais , Fiber optic Communication, Prentice Hall International Edition, Fourth Edition (1992)..

Reference Books:

1. John M. Senior, "Optical Fiber Communication (Principles & Practice)", Pearson Education.

	Speech And Audio Processing (Professional Elective Course – III)									
				<u> </u>	OUDSE		JIE			
Course	Speech	And	Audio Pr	U rocossi	UUKSE ng		NE Short	SAP	Course	
Title:	Specci	Anu /	Auto I I		ng		Title:	BAI	Code:	
Course	descriptio	on:							00000	
1. Basi	c properti	es of	audio and	d speed	h signal	s, Basic co	oncepts	and opera	tions of au	dio signal
proc	essing, In	trodu	ction to a	cousti	cs and he	earing;	•			C
2. Proc	essing of	digita	l audio s	ignals,	equaliza	tion, perc	eptual a	udio codi	ng, sound s	ynthesis.
Lecture		Hou	ırs/week		No. of w	veeks	Total l	nours	Semest	ter credits
		3			14		42		3	
Prerequ	isite cour	se(s):								
Signals a	Signals & Systems, Digital Signal Processing									
Course	objectives	5:								
1. To be	able to re	late h	uman ph	ysiolog	gy and ar	natomy wi	th signa	l processi	ng paradig	ms.
2. To acc	quire the k	nowl	edge of s	speech	generation	on and spe	ech reco	ognition r	nodels.	
3. To un	derstand r	netho	ds/techni	iques u	sed in sp	eech sign	al estima	ation & de	etection.	
Course	outcomes	: 1		. •	.1	. 1 . 11	11 11			
After suc	ccessful co	omple	tion of th	his cou	rse the st	tudent wil	l be able	e to:		
1. Mathe	matically	mode	el the spe	ecn sig	gnal .	signal				
2. Allaly	ze the que	uity a	the space	sh and	audio sic	signal.				
4 Summ	y and enn	vario	is speech	n anu . 1 codin	autilo sig a technic	gilais.				
5 Analy	ze applica	tion c	of speech	proces	ssing in s	neech cor	npressic	on speech	recognitio	n and
speech	svnthesis.		or specen	proce		speccen con	np100010	in, specen	recognitio	ii, uita
1	2			C	OURSE	CONTE	NT			
Speech A	And Audi	io Pro	ocessing			Semeste	r:	V	/II	
Teachin	g Scheme	:				Examina	ation sc	heme		
Lecture	S:		3 hours	/week		End sen	nester ex	xam (ESI	E):	60 marks
						Duratio	n of ES	E:		03 hours
						Internal	Sessior	nal Exam	s (ISE):	40 marks
Unit–I:	Speech P	roces	sing	No. o	of Lectu	res: 09 Ho	ours		Marks: 1	2
Speech l	Production	n and	Modelin	ig Hun	nan Aud	itory Syste	em; Ger	neral struc	cture of spe	eech coders
The pro-	cess of s	beech	product	ion, A	coustic	theory of	speech	production	on, Digital	models of
speech s	speech signals of speech signal.									
Unit–II:	Speech A	Analy	sis	No. o	of Lectu	res: 09 H	ours		Marks: 1	2
Time and frequency domain analysis of speech, Linear predictive coding (LPC) analysis,										
Cepstral	analysis,	Speec	h param	eter (pi	tch) esti	mation. Sp	peech Si	gnal Proc	essing.	

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **11** of **69**

Unit–III: Speech Synthesis	No. of Lectures: 08 Hours	Marks: 12							
Principles of speech synthesis	, Generic CELP encoders and	decoders. Excitation code book							
search-state save method ,zero	-input zero state method .CEPL	based on adaptive codebook,							
Adaptive codebook search.		_							
Unit-IV: Coding of Speech	No. of Lectures: 08 Hours	Marks: 12							
and Quantization									
Introduction, Scaler Quantization, uniform quantizer, logarithmic quantizer ,adaptive quantizer									
Speech redundancies, Vector	quantization-distortion measure	s, codebook design, codebook							
types., Linear delta modulation, Adaptive delta modulation,									
Unit-V Audio Compression	No. of Lectures: 08 Hours	Marks: 12							
Digital Audio, Lossy sound compression, µ-law and A-law companding, DPCM and ADPCM									
audio compression, MPEG aud	dio standard, frequency domain	coding, format of compressed							
data.									
Text Books:									
1."Digital Speech" by A.M.Kor	ndoz, Second Edition (Wiley Stu	dents Edition), 2004.							
2. "Speech Coding Algorithms:	Foundation and Evolution of Sta	andardized Coders", W.C. Chu,							
WileyInter science, 2003.									
3. "Digital Processing of Speech	1 Signals", Rabiner and Schafer, 1	Prentice Hall, 1978.							
Reference Books:									
1. "Discrete-Time Speech Signa	ll Processing: Principles and Prac	tice", Thomas F. Quatieri,							
Publisher: Prentice Hall.									
2. "Speech and Audio Signal Pr	ocessing: Processing and Percept	ion of Speech and Music",							
Nelson Morgan and Ben Gold, J	John Wiley & Sons.								
3. "Speech and Audio Signal Pr	rocessing", Gold & Morgan, 1999	9, Wiley and Sons.							

	Nano Electronics (Professional Elective Course – III)								
						•)			
			COURSE	OUTLIN	NE	[
Course	Nano El	ectronics			Short	NE	Course	e	
The:	loscrintio	n •			The:		Code:		
The rapi	d growth	of the integrated	circuit (I	C) indust	rv has	led to the	emergen	ce of nano	
microele	ctronics p	process engineering	as a nev	advance	ed discip	oline. Thu	s, there is	s a need to	
impart qu	ality edu	cation at a sufficien	tly advanc	ed level i	n the cui	rent state	of art Nan	0	
electronics discipline									
Lecture		Hours/week	No. of w	eeks	Total h	nours	Semest	ter credits	
		3	14		42		3		
Prerequ	isite cour	se(s):	.			T 1			
Elements	of Electr	ical and Electronics	Engineer	ing, CMC	DS Desig	n, Electro	onics Devi	ces.	
Course (objectives	: ourse is designed t	ancomp	and all the		o viz no	no and mi	oro ragima	
design s	imulation	and fabrication and	all types	of IC's I	t is expect	cted that	no anu nn after unde	rooing this	
course. tl	ne student	s will acquire both	theoretica	knowled	ge and n	ractical sk	cills in div	erse	
upcomin	g areas of	current technology	and will b	be able to	get into	any one o	f these are	as or be a	
bridge be	etween the	ese advanced areas t	to face the	upcoming	g challer	nges and u	p-liftment	of society.	
Course of	outcomes								
After suc	cessful co	ompletion of this co	urse the st	udent wil	l be able	to:			
I. Stud	ents will u	inderstand the diver	s electron	ic device	fabricati	on.	fanasislis	ation	
2. Stud	ents will f	have in-deput techni have practical under	standing	of the mai	or engin	eering cor	r specializ	ation.	
demo	onstrate a	polication of their the	neoretical	knowledg	e of the	concepts a	and help to) get	
the a	cademic a	and industrial jobs.			,• •1 •11•	- one-pro-		. 8	
4. Stud	ents will h	be able to interact so	cientificall	y with inc	lustry bo	oth within	and outsid	le of a	
Clas	sroom set	ting.							
5. Stud	ents will o	levelop an apprecia	tion of con	ntinuing e	ducation	al and pro	ofessional		
deve	lopment.			CONTE					
Nono El	atronia	(JUURSE	Someete	<u>NI</u>	V	11		
				Semeste	· ·	V.	11		
Teaching	g Scheme			Examina	ation sci	neme		(0 1	
Lectures	:	3 hours/weel	K	End sen	iester ex	am (ESE	() :	60 marks	
					n ol ESI	2: - I F		40 mours	
TT •4 T		NT.	<u>ет 4</u>	Internal	Session	al Exams	(ISE):	40 marks	
Tuppel i	inction of	No.	unneling	Tunnelin	g Throug	nh a Dota	wiarks: 1	4 er Metal	
I unner junction and applications of tunneling, I unneling I nrough a Potential Barrier, Metal- Insulator Metal-Semiconductor and Metal-Insulator-Metal Junctions Coulomb Blockade									
Tunnel Junctions, Tunnel Junction Excited by a Current Source. Spintronics and Foundations of									

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **13** of **69**

nano-photonics.		
11	No. of Losteness 00 House	Manlar 12
Unit–II:	No. of Lectures: 08 Hours	
Field Emission, Gate—Oxide I	Unneling and Hot Electron Ellect	is in nano MOSFEIS,
Tunneling Diode	Microscope, Double Barrier Tull	henng and the Resonant
Unit III.	No. of Lactures: 08 Hours	Marke 17
Introduction to lithography- (ontact proximity printing and	Projection Printing Resolution
Enhancement techniques overl	av-accuracies Mask-Error enhar	accement factor (MEEE) Positive
and negative photoresists. Elec	ctron Lithography. Projection P	rinting. Direct writing. Electron
resists. Lithography based on S	Surface Instabilities: Wetting, De	-wetting, Adhesion, Limitations,
Resolution and Achievable / lin	e widths etc. Lift off process, Bu	lk Micromachining.
		-
Unit–IV:	No. of Lectures: 09 Hours	Marks: 12
Introduction to MEMS and NE	MS, working principles, as micr	o sensors (acoustic wave sensor,
biomedical and biosensor, chem	nical sensor, optical sensor, capac	citive sensor, pressure sensor and
thermal sensor), micro actuati	on (thermal actuation, piezoele	ctric actuation and electrostatic
actuation-micro gripers, mot	ors, valves, pumps, acceleron	meters, fluidics and capillary
thermoelectricity MEMS/NEM	Issive micro iluidic devices, P	Sputter deposition Europeration
Chemical vapor deposition etc	is design, processing, Oxidation,	Sputter deposition, Evaporation,
Chemical vapor deposition etc.		
Unit-V	No. of Lectures: 09 Hours	Marks: 12
Introduction – Scaling of physic	cal systems – Geometric scaling	& Electrical system scaling. The
Single-Electron Transistor: The	e Single- Electron Transistor S	ingle-Electron Transistor Logic,
Other SET and FET Structures,	, Carbon Nanotube Transistors (1	FETs and SETs), Semiconductor
Nanowire FETs and SETs,C	Coulomb Blockade in a Nano	capacitor, Molecular SETs and
Molecular Electronics.		
Torrt Doolog		
1 Stephen D. Sentaria Microsy	stom Dasian Kluwar Acadomic I	Drass
2 Marc Madou <i>Fundamentals</i>	of microfabrication & Nanofabri	reation
3 T Fukada & W Mens <i>Micro</i>	Mechanical system Principle &	Technology Elsevier
1998.	meenamear system i rincipie a	
4. Julian W.Gardnes, Vijav K. V	Varda. Micro sensors MEMS & S	mart Devices. 2001.
Reference Books:		
1. Nano Terchnology and Nano	Electronics – Materials, devices	and measurement
Techniques by WR Fahrner – S	pringe	
2. Nano: The Essentials – Unde	rstanding Nano Scinece and Nan	otechnology by T.Pradeep;
Tata Mc.Graw Hill.		
3. Spin Electronics by M. Ziese	and M.J. Thornton	
4. Nanoelectronics and Nanosys	stems – From Transistor to Moleo	cular and Quantum Devices
by Karl Goser, Peter Glosekotte	er. Jan Dienstuhl	

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **14** of **69** 5. Silicon Nanoelectronics by Shunri Odo and David Feny, CRC Press, Taylor & Franicd Group

6. Nanotubes and nanowires by C.N.R. Rao and A. Govindaraj, RSC Publishing

7. Quantum-Based Electronic Devices and Systems by M. Dutta and M.A. Stroscio, World Scientific.

8. James R Sheats and Bruce w.Smith, "Microlithography Science and Technology", Marcel Dekker Inc., New York, 1998.

9. J.P. Hirth and G.M.Pound "Evaporation: Nucleation and Growth Kinetics" Pergamon Press, Oxford, 1963

	Satellite Communication							
	(Professional Elective Course – IV)							
C	C - 4 - 1194 -	<u></u>		OUTLIN	E Chart	CC	C	<u> </u>
Course	Satemite	Communica	tion		Snort	SC	Course	
Course description:								
This cou	irse descr	ibes the basi	ics of Satellite	communi	pation t	o the under	raraduata	students
Satellite	communi	cations enable	e wireless com	nunication	in regio	ons The pro	oram oiv	es vou an
in-depth	understa	nding of the	e engineering a	aspects of	these	important of	current a	nd future
technolo	gies		•••8••••	speces of		p 01 00010		
Lecture	0	Hours/weel	K No. of w	veeks	Total l	nours	Semeste	er credits
		03	13		42		03	
Prereau	isite cour	se(s): Advan	ced Digital Con	nmunicati	on			
Orbital E	Equations.	Link Budget.	Various Antenr	nas and Va	rious A1	chitecture o	of Satellite	e System
Course	biectives	:	, 4110 45 1 11001					- ~ j = • • •
1. To stu	dy the bas	ics concept o	f various satell	ite commu	nication	•		
2. To Un	derstand t	he principle a	nd architecture	of satellite	commu	nication.		
3. To far	niliarize th	ne concept of	2G,3G,4G and 5	5G system.				
4. Provid	le strong f	oundation for	understanding	of Satellite	Link B	udget and va	arious ant	ennas.
5.To Lea	rn the mo	dern trends in	Mobile Comm	unication E	Engineer	ing.		
Course	outcomes							
After suc	ccessful co	ompletion of t	his course the st	tudent will	be able	to:		
1 Descri	be the bas	sic concepts a	nd applications	of satellite	systems			
2. Analy	ze, test an	d use various	link budget, pov	wer budget				
3. Descri	be the co	oncept of 2G,	3G, 4G and 5G s	ystem.				
4.Apply	the concep	pt for measure	ement of various	s parameter	rs of C/I	N ratio.		
5. To des	scribe the	modern trend	s in satellite con	nmunicatio	n engin	eering.		
			COUPSE	CONTEN	т			
Satellite	Commur	nication	COURSE	Semester	1 r•	VII		
Teachin	o Scheme	•		Examina	tion sc	heme		
Lecture	s. 03	3 hour	s/week	End sem	ester es	am (ESE).		60 marks
		e nour		Duration	n of ESI	E:		03 hours
				Internal	Session	al Exams (ISE):	40 marks
Unit_I:			No. of Lectu	res: 09 Ho	ours	M	larks: 12	
Overview	v of Satel	lite Systems.	Orbits and Lau	nching Me	thods-In	troduction -	– Frequer	icv Bands
used for	Satellite	Communicati	on, Intelsat, Pol	ar Orbiting	satellit	es. Kepler's	First, So	econd and
Third La	w, Defini	tions of Term	ns for Earth orb	iting Satell	lites – C	Prbital Elem	ents – Aj	bogee and
Perigee	Heights,C	Concept of S	olar Day and	Sidereal 1	Day Or	bital Pertur	rbations,	and sun-
synchron	ious orbit	-	-		-			
Unit–II:			No. of Lectu	res: 09 Ho	ours	M	larks: 12	
Geostatio	onary orbi	it, Wave Prop	pagation and Po	olarization-	Antenna	a look angl	es, anten	na mount,
limits of	visibility	, Earth eclip	ose of satellite,	sun transi	it outag	e, launchin	g of geo	stationary

satellites, Atmospheric los	sses, ionospheric effects,	rain attenuation, Antenna							
polarization, polarization of sa	tellite signals, cross polarization	on discrimination, Ionospheric							
depolarization rain depolarization, ice depolarization.									
Unit-III:No. of Lectures: 08 HoursMarks: 12									
Satellite Antenna and Link Design-Overview of Satellite Link Budget, Antenna basics, aperture									
antennas. Parabolic reflectors, Offset feed, double reflector antenna, Introduction, equivalent									
isotropic radiated power, Trans	mission losses, The link power	budget equation, System noise,							
carrier to noise ratio, The uplin	k & downlink, Effects of rain,	combined Uplink and Downlink							
C/N ratio, Calculation in clear ai	ir and in rainy condition.								
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12							
Introduction to Wireless Com	munications and Modern Wir	reless Communications system-							
Evolution of Mobile radio com	munication, Mobile Radio syst	ems around the world, wireless							
communication system, Trend	ls in cellular radio and pers	sonal communications, Second							
generation(2G) cellular netw	works, Third generation(3G)	wireless networks, Fourth							
generation (2G) wireless networks, Fifth generation (5G) wireless networks wireless local									
generation(4G) wireless netwo	orks, Fifth generation(5G) win	eless networks, wireless local							
generation(4G) wireless network loop(WLL) and wireless Local A	orks, Fifth generation(5G) win Area Networks(WLANs).	eless networks, wireless local							
generation(4G) wireless network loop(WLL) and wireless Local A	orks, Fifth generation(5G) win Area Networks(WLANs).	eless networks, wireless local							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V:	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours	reless networks, wireless local Marks: 12							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir	eless systems and Standards-							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse,	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies,	reless networks, wireless local Marks: 12 eless systems and Standards- Handoff strategies, Interference							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, ind grade of service, Improving of	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mot	No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, nd grade of service, Improving o bile (GSM).	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mot Text Books:	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, and grade of service, Improving o bile (GSM).	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mot Text Books: 1. D. Roddy, "Satellite Commun	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, and grade of service, Improving obile (GSM).	Marks: 12 Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular h Edition, ISBN-0-07-007785-1							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mob Text Books: 1. D. Roddy, "Satellite Commun 2. T. Rappaport, "Wireless Com	No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, md grade of service, Improving bile (GSM). nications", Tata McGraw-Hill, 4t munications-Principles and Prac	Marks: 12 Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular h Edition, ISBN-0-07-007785-1 tice, 2nd Edition, ISBN-978-81-							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mot Text Books: 1. D. Roddy, "Satellite Commun 2. T. Rappaport, "Wireless Com 317-3186-4.	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, and grade of service, Improving o bile (GSM).	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular h Edition, ISBN-0-07-007785-1 tice, 2nd Edition, ISBN-978-81-							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mot Text Books: 1. D. Roddy, "Satellite Commun 2. T. Rappaport, "Wireless Com 317-3186-4. Reference Books:	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, and grade of service, Improving bile (GSM). nications", Tata McGraw-Hill, 4t munications-Principles and Prac	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular h Edition, ISBN-0-07-007785-1 tice, 2nd Edition, ISBN-978-81-							
generation(4G) wireless netwo loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mob Text Books: 1. D. Roddy, "Satellite Commun 2. T. Rappaport, "Wireless Com 317-3186-4. Reference Books: 1. Timothy Pratt Charles W Bo	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, und grade of service, Improving bile (GSM). nications", Tata McGraw-Hill, 4t munications-Principles and Prac	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular th Edition, ISBN-0-07-007785-1 tice, 2nd Edition, ISBN-978-81-							
generation(4G) wireless networe loop(WLL) and wireless Local A Unit–V: Cellular Concept and System Introduction, Frequency reuse, and system capacity, Trucking a systems, Global System for Mob Text Books: 1. D. Roddy, "Satellite Commun 2. T. Rappaport, "Wireless Com 317-3186-4. Reference Books: 1. Timothy Pratt Charles W Bo India second edition 2002.	orks, Fifth generation(5G) win Area Networks(WLANs). No. of Lectures: 08 Hours n Design Fundamentals, Wir channel assignment strategies, and grade of service, Improving bile (GSM). nications", Tata McGraw-Hill, 4t munications-Principles and Prac	Marks: 12 eless systems and Standards- Handoff strategies, Interference coverage and capacity in cellular th Edition, ISBN-0-07-007785-1 tice, 2nd Edition, ISBN-978-81-							

Digital Image and Video Processing (Professional Elective Course – IV)											
COURSE OUTLINE											
Course Title:	Digital Image and	Short Title:	DIVP	Cour Code	Course Code:						
Course description:											
To learn the basic principles and tools used to process images and videos, and how to apply them											
in solving practical problems of commercial and scientific interests.											
Lecture	Hours/week	No. of	Total k	nours		Semes	ster				
	3		12			3	.5				
D	5	14	72			5					
Prerequisite course(s):	<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	D''(.10'	•								
Digital Communication	, Signais & Systems,	Digital Signal Proc	cessing								
Course objectives:	······································	C 1: : 1 :									
1. Provide the student w	ith the fundamentals	of digital image pr	ocessing	S							
2. Introduce the students	s to some advanced to	opics in digital ima	ge proce	ssing.							
3. Give the students a us	serul skill base that w	ould allow them to	carry of	ut furthe	r study	y in the					
field of Image processin	lg.										
Course outcomes:	4:f 4h: 4h		1. 4								
After successful comple	tion of this course th	e student will be at	ble to:								
1. Understand theory and	a models in image a	nd video Processin	g.								
2. Process these images	for image compression	t of certain properti	les .								
A Apply quantitative m	odels of image for va	on and counig.	nnligati	one							
5 Understand theory an	d models in Video P	rocessing	ipplication	0115							
5. Onderstand theory an		SF CONTENT									
Digital Image and Vide	o Processing	Semester.		VI	T						
Teaching Schemes	to Trocessing	Examination ash		VII							
Teaching Scheme:	<u> </u>	Examination sch	eme								
Lectures:	3 hours/week	End semester exa	am (ESE	L):	60) marks	5				
		Duration of ESE:	:		0.	3 hours					
		Internal Sessiona	l Exam	s (ISE):	40) marks	5				
Unit–I::	No. of Lectu	ares: 09 Hours		Μ	arks:	12					
Introduction											
Digital Image Processi	ng: Problems and A	Applications, Image	e repres	entation	and	Modeli	ing,				
Image Enhancement ,Ir	nage Analysis, Imag	ge Reconstruction f	from Pro	ojections	and I	mage D	Data				
CompressionBasic re	lationship between	pixels- neighbor	rhood,	adjaceno	cy, co	onnectiv	vity,				
distance measures.											
	1		,								
Unit–II: Image	No. of Lectu	ares: 09 Hours		Μ	arks:	12					
Perception											

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **18** of **69**

Introduction, Light lumi Visual Model, Image fid Color transformations, n Image Segmentation.	nance, brightness and contrast, MTF of the lelity criterion. Color image processing-,col neasures, Color image smoothing and sharp	visual system, Monochrome or models-RGB,YUV,HIS;. ening. Color Segmentation-					
Unit–III: Image Sampling and Quantization	No. of Lectures: 08 Hours	Marks: 12					
Image scanning, two dimensional sampling theory, extension of sampling theory, limitations in sampling and reconstruction, image quantization. Detection of discontinuities. Wavelets and multi-resolution image processing.							
Unit–IV: Image Transform	No. of Lectures: 08 Hours	Marks: 12					
Two dimensional orthog dimensional discrete For compression-Redundance entropy. Lossy compress	gonal and Unitary transform, Properties of u urier transform, , Wavelets and sub-band. W cy-inter-pixel and psycho visual. Lossless co sion- Predictive and transform coding. Disc	nitary transform, The one Vavelet packets. Image compression-predictive, rete Cosine transforms.					
Unit–V: Fundamentals of Video Coding	No. of Lectures: 08 Hours	Marks: 12					
Inter-frame redundancy Predictive Techniques: I Video coding standard-N	y, motion estimation techniques, full se Forward and backward motion prediction, F MPEG and H.26X Video segmentation-Tem	arch, fast search strategies. Frame classification-I,P and B. Supporal Segmentation.					
Text Books:							
 Gonzalez and Woods, "Digital Image Processing", Pearson Education, Arthur Weeks Jr., "Fundamentals of Digital Intake Processing", PHI. S Jayaraman, "Digital Image Processing", Tata McGraw Hill Publications. 4. Anil Kumar Jain, "Fundamentals of Digital Image Processing"; Pearson Education 2nd edition 2015. 							
Defense Deeler							
1. Pratt William, "Digita	l Image Processing", John Wiley & Sons						
2. Milan Sonka, Vaclav Vision", Second Edition	Hlavac and Roger Boyle, "Image Processin , Thomson Learning, 2001	g, Analysis and Machine					

	Mixed Signal Design (Professional Elective Course – IV)									
	COURSE OUTLINE									
Course	Mixed S	ignal Desi	gn			Short	MSD		Course	
Title:	Title: Code:									
Course	descriptio	on:								
This cou	rse focuse	s on the co	ncepts of	f mixed si	gnal VLS	I design.	The co	urse v	will give	practical
aspect of	mixed sig	gnal VLSI	blocks su	ich as con	nparators,	data con	verters,	oscil	lators an	d phase
locked lo	op. As a j	part of this	course, t	he studen	ts will use	industry	v standa	rd sof	twares a	nd tools
such as C	adence's	Virtuoso se	chematic	, Spectre s	simulator :	and Men	torGrap	ohics'	Eldo and	Calibre
form of	layout sim	to will be d	ong with	the paras	itic extrac	tondard	e desig	n prot	olems gr	ven in the
The stud	ussignmen	its will be t	lesigned	$th \circ DVT$	ated in a s	standard	CMOS	tecnn	lology by	students.
tomporet	y will cov	er design i	ssues on	$\lim_{n \to \infty} P \vee I \vee$	variations		dociona		ches III	aring the
need of V	UIE and pi	on industry). III Suiiii	lialy, the C	course is	uesigne	u wit	II COIISIU	ering the
Lecture	VL51 UCSI	Hours/w	eek	No. of w	veeks	Total h	ours		Semeste	r credits
Lecture		3	cen	14		42	ours		3	i ci cuito
Drorogu	isita agur	5 50(a)•		17		72			5	
CMOSI	Design V	se(s): I SI								
	biectives									
To desig	n and to it	nnlement t	he produ	ct level d	esign bloc	ks for V	I SI ann	licati	ons	
1 To lea	rn Switch	ed Canacit	or Circui	ts		K5 101 V.	Loi app	incan	0115.	
2 To lea	rn advanc	e design te	chniques	for hand	oan referei	nces cor	nnarato	rs os	cillators	and PLL
3. To un	derstand d	ata conver	ter funda	mentals [DAC.		npuluto	10, 00	cinacons	
4. Learn	Nyquist R	Rate A/D C	onverters	5						
5. Under	stand over	rsampling of	converter	s, continu	ous time f	filters.				
Course of	outcomes	:								
After suc	ccessful co	ompletion of	of this co	urse the s	tudent wil	l be able	to:			
1. Unde	erstand the	e concepts	of Switch	ned capaci	itors Circu	its				
2. Able	to unders	tand the de	sign and	applicatio	on of PLL	S.				
3. To st	udy conce	epts of Data	a Conver	ter Funda	mentals.					
4. Unde	erstand the	e concepts (of Nyaui	st Rate A/	D Conver	ters .and	applica	ations		
5 Unde	erstand co	incents of	the Over	rsamnling	Converte	ers Cor	ntinuous	s-Tim	e Filters	CMOS
Tran	s conducto			sumpring	converte	15, COI	ninuou	, 1111		, emos
11411	sconduci	<i>л</i> з.								
			(COURSE	CONTE	NT				
Mixed S	ignal Des	ign			Semeste	r:		VII		
Teachin	g Scheme	:			Examina	ation scl	heme			
Lectures	5:	3 ho	urs/weel	K	End sen	nester ex	am (ES	SE):	6	60 marks
		1			Duratio	n of ESI	E:		0	3 hours
L										

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **20** of **69**

	Internal Sessio	onal Exams (ISE): 40 marks				
Unit–I:	No. of Lectures: 08 Hours	Marks: 12				
Switched Capacitor Circuits:	Switched Capacitor Circuits: Introduction to Switched Capacitor circuits basic building blocks,					
Operation and Analysis, Non-	ideal effects in switched capacit	itor circuits, Switched capacitor				
integrators first order filters, Sw	vitch sharing, Biquad filters.					
	I	<u> </u>				
Unit–II:	No. of Lectures: 08 Hours	Marks: 12				
Phased Lock Loop (PLL): Ba	sic PLL topology, Dynamics of s	simple PLL, Charge pump PLLs-				
Lock acquisition, Phase/Freque	ency detector and charge pump,	Basic charge pump PLL, Non-				
Ideal effects in PLLs-PFD/CP n	on idealities, Jitter in PLLs, Dela	y locked loops, applications.				
		Mandana 12				
Unit-III: Data Convertor Eurodomonto	No. of Lectures: 08 Hours	Marks: 12				
Data Converter Fundamenta	head converters Dinary Scale	a convertors. Thermometer add				
converters Hybrid converters	based converters, Binary-Scaled	i conveners, mermometer-code				
Unit–IV:	No. of Lectures: 09 Hours	Marks: 12				
Nyquist Rate A/D Converter	s: Successive approximation co	onverters, Flash converter, Two-				
step A/D converters, Interpola	ating A/D converters, Folding	A/D converters, Pipelined A/D				
converters, Time-interleaved co	nverters. Electronics & Commun	nication Engineering				
Unit–V	No. of Lectures: 09 Hours	Marks: 12				
Oversampling Converters: N	loise shaping modulators, Deci	mating filters and Interpolating				
filters, Higher order modulator	s, Delta sigma modulators with r	multi-bit quantizers, Delta sigma				
Continuous-Time Filters: Intr	oduction to Gm-C Filters, Bipola	r Trans conductors, CMOS				
Filters	and Active Transistors, BI CMOS	Trail conductors, MOSFET-C				
Text Books:						
1. Design of Analog CMOS Int	egrated Circuits- Behzad Razavi.	TMH Edition, 2002				
2. Analog Integrated Circuit De	sign- David A. Johns,Ken Martir	n, Wiley Student Edition, 2013				
		· · · · · · · · · · · · · · · · · · ·				
Reference Books:						
1. CMOS Mixed-Signal Circuit	Design - R. Jacob Baker, Wiley	Interscience, 2009.				
2. CMOS Analog Circuit Desig	n –Philip E. Allen and Douglas F	R. Holberg, Oxford University				
Press, International Second Edi	tion/Indian Edition, 2010.					
WEB REFERENCES						
1. NPTEL online courses.						

Artificial Intelligence & Machine Learning								
COURSE OUTLINE	(open	Liccuv	course	III)				
Course Artificial Intelligence & Machine Learning Short AI-ML Course								
Title:	C		U	Title:		Code:		
Course description:								
This course is to intro	duce the student	ts to the	fundame	ntals of	Artificial I	ntelligen	ce, Expert	
Systems and Neural N	letworks & Fuz	zy logic	and ena	ble ther	n to apply	these co	ncepts for	
solving real world prob	lems.	(1 1	1			. 1	·····	
and computer science to	a create automat	techniqu	es such as	s statisti	cs, linear alg	gebra, op	incredibly	
nervasive with applicat	ions spanning fr	om husir	ness intell	igence t	nig as a ner o homeland	security	This class	
will familiarize studen	ts with a broad	1 cross-s	ection of	models	s and algor	ithms fo	r machine	
learning, and prepare	students for r	research	or indus	try app	lication of	machine	e learning	
techniques							e	
Ho	urs/week	No. of w	eeks	Total l	nours	Semest	er credits	
03		14		42				
Prerequisite course(s)								
Course objectives:			111					
1. To understand the va	rious characteris	tics of In	telligent a	agents.	1	1		
2. To introduce students	s to the basic con	f Eugen	d techniqi	ues of N	eural Netwo	ork.		
4. To introduce students	to the basic con	DI FUZZY .	Logic. d technicu	ues of M	achina laar	nina		
5. To gain skills for solv	ving practical pro	oblems b	v machine	e learnir		iiig.		
	ing practical pro		<u>j 1114011111</u>	e reurini	.9.			
After successful comple	etion of this cour	se the stu	udent will	be able	to:			
Course Outcome :								
1. Use appropriate sea	rch algorithms fo	or any Al	[problem					
2. Apply basic concep	t to describe ne	ural netw	ork.					
3. Apply basic knowle	dge to describe	concept	of Fuzzy	logic.				
4. Recognize the chara	acteristics of mac	chine lear	rning that	make it	useful to rea	al-world	problems.	
5. Able to use regular	ized regression a	and Class	ification a	algorith	ns.			
	C(MIRSE (CONTEN	JT				
Artificial Intelligence	& Machine Lea	rning	Semeste	r:	VI	[
Teaching Scheme:		8	Examina	ation sc	heme	-		
Lectures: 03	3 hours/week		End sen	nester ex	xam (ESE):		60 marks	
			Duratio	n of ES	E:		03 hours	
			Internal	Sessior	al Exams (ISE):	40 marks	
Unit–I:	No. of	Lecture	s: 09 Hou	irs	Marks: 12	,		
Introduction to Artific	cial Intelligence							
Definitions of AI, Hist	tory, Turing test	t, AI Pro	blem and	l Techni	ques: Probl	em as S	tate Space	

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page 22 of 69

Search, Problem characterist	ics, Production System: Wat	ter Jug problem. Knowledge								
Representation Issues, Know	vledge Representation using	Predicate Logic, Knowledge								
Representation using Rules .										
Unit–II:	No. of Lectures: 09 Hours	Marks: 12								
Neural Network										
Characteristics of Neural Networks: Features of Biological Neural Networks, Biological Neural										
Networks, Performance Compa	Networks, Performance Comparison of Computer and Biological Neural Networks									
Artificial Neural Networks:	Terminology, Models of Ne	euron: McCulloch-Pitts Model,								
Perception, Adeline Topology	v, Basic Learning Laws ,Learn	ning Methods: Supervised and								
unsupervised, Introduction to M	Iultilayer Perceptron, various acti	ivation functions.								
Unit–III:	No. of Lectures: 08 Hours	Marks: 12								
Fuzzy Logic										
Introduction to fuzzy sets and fu	uzzy logic systems, Fuzzy set def	finitions, operations, Fuzzy rules,								
Fuzzy reasoning. Fuzzy inferen	ce systems, Fuzzy models.									
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12								
Introduction to Machine Le	earning: Types of Machine Le	earning Algorithms, Supervised								
Learning, Unsupervised learning	ng, Reinforcement Learning, Cla	ssification of Machine Learning								
Concept, Distance Based Machine	ine learning Methods, K-Nearest	Neighbor (kNN).								
Introduction to Clustering Te	echniques, Possible Application	ns, Requirements of clustering								
algorithm, Problems associated	with using Clustering Techniqu	e, Types of Clustering Methods,								
Clustering Strategies.										
•										
Unit–V:	No. of Lectures: 08 Hours	Marks: 12								
Classification / Regression:	Classifications, decision tree	learning, naive bayes, linear								
regression, logistic regression	n, Linear regression models, su	pport vector machine, beyond								
binary classifications: multiclas	s or multinomial classification.									
Text Books:										
1. Elaine Rich, Kevin Knight a	and Shivshankar Nair "Artificial]	Intelligence". 3rd Edition TMH.								
2. V.K. Jain, Machine Learnin	g, Khanna Publishing House.									
3. Rajiv Chopra, Deep Learnin	ig. Khanna Book Publishing, Nev	w Delhi.								
4. Vinod Chandra S.S., Artific	ial Intelligence & Machine Learn	ning, PHI.								
5. Rajasekaran and G.A. Vijay	alakshmi, "Neural Networks, Fu	zzy Logic, and Genetic								
Algorithms", PHI .										
Reference Books:										
1. Rajiv Chopra, Machine Lea	rning, Khanna Book Publishing,	New Delhi.								
2. Mitchell Tom, Machine Lea	rning. McGraw Hill, 1997.									
3. Ethem Alpaydin, Introduction	on to Machine Learning, PHI.									
4. Timothy J Ross, "Fuzzy Log	gic with Engineering Application	", TMH.								
5. S. N. Sivanandam & S. N.	Deepa, Principles of Soft Compu	ting, Wiley - India,								
2007										

			(On	Big Data	Analytics	5 TTT)			
			(Op	en Electiv	e Course	– III)			
COURSE OUTLINE									
Course	Big Data	Big Data AnalyticsShortBDACourse							
Title:	0	U				Title:		Code:	
Course	descriptio	n:							
Data An	alysis is	an ever	r-evolving d	iscipline v	with lots	of focus	s on new j	predictive	modeling
techniqu	es coupled	d with r	ich analytica	l tools tha	t keep inc	reasing	our capacity	y to handl	e big data.
Lecture		Hour	s/week	No. of w	veeks	Total l	nours	Semest	er credits
			3	1	4		42		3
Prerequ	isite cour	se(s):							
Data Mi	ning								
Course	objectives	5:							
1. To u	nderstand	the con	cepts of big	data					
2. To u	nderstand	the con	cepts of Data	a science					
3. To d	o the data	analys	is						
4. To aj	oply the co	oncepts	of data visua	alization					
5. To a	opiy data a	analytic	is tools						
Course	outcomes	:							
After suc	ccessful co	ompleti	on of this cou	urse the st	udent will	be able	to:		
1. Unde	erstand the	e conce	ots of big dat	a					
2. Unde	erstand the	e concej	ots of Data so	cience					
3. Do th	ne data an	nalysis							
4. Appl	y the conc	cepts of	data visualiz	zation					
5. Appl	y data ana	alytics t	ools						
				OUDSE	CONTEN	JT			
Rig Date	Analytic		<u> </u>	OURSE	Semeste	<u>1</u> r.		VI	T
Teachin	g Scheme	•			Examin	ation Sc	heme:	• •	L
Lecture	s:	3	hours/weel	K	End Sen	nester E	 Exam (ESE):	60 marks
					Duratio	n of ESI	E:	-	03 hours
					Internal	Session	al Exam (I	ISE):	40 marks
	Unit–I	•	No.	of Lectu	res: 09 H	ours	Ν	Aarks: 12	1
Introdu	ction to I	Big Da	ta: Big data	, 3V's, 4	V's of bi	g data,	Types of H	Big data,	Analytics,
Industry	examples	s of B	ig data, Da	ta risk,	Big data	technol	ogies, Big	data are	chitecture,
operation	hal and an	alytical	big data tech	nnologies,	big data a	and eGo	vernance, E	Benefits of	Big data,
analytics	and cloud	d comp	uting, Crowd	sourcing	analytics.				
		_	I			1			
	Unit–Il	[<u>:</u>	No.	of Lectu	res: 09 H	ours	Ν	Marks: 12	
Introdu	ction to	Data	Science: Da	ata Scien	ce, Term	inology	Related w	vith Data	Science,
Methods	of Data I	keposit	ory, Personn	ei involve	ea with D	ata Sciei	nce, Types	s of Data,	i ne Data

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **24** of **69**

Science Process (DSP), Popular	Data Science Toolkits, Familiarit	y with Example Applications
Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Data Analysis: Introduction Types Of Big Data Analytics Frequency Distribution, Popu Measures Of Central Tendency, Population or Sample, Normal	to Applied Statistical Technique , Collecting Data for Sampling lation and Parameters, Central , Different Types of Statistical M Distribution Curve	es, Types of Statistical Data, and Distribution, Probability, I Tendency or Central Value, eans, Problems of Estimation :
Unit IV.	No. of Logituros: 08 Hours	Monkey 12
Unit-IV: Data Vigualization: Data Vigu	No. of Lectures: 08 Hours	Marks: 12
Visualization Methods, Retin Recent trends in various data co Tools, Visualizing Big Data, Potential Solutions, Future Prog	al Variables, Mapping Variable ollection and analysis techniques, Preattentive Attributes, Challeng gress of Big Data Visualization	es to Encodings, Case Study, Various Big Data Visualization ges of Big Data Visualization,
∐nit_V•	No. of Lectures: 08 Hours	Marks: 12
framework, Analysing big data features, architecture, working, Pig vs HIVE,	ogy and 1001s: Hadoop: Archite with Hadoop. MapReduce: Ove data models. PIG: Introduction, c	ecture, components of Hadoop rview, Map Operations, HIVE: omponents, pig vs MapReduce,
Text Books:		
 V.K.Jain, "Data Science and V.K.Jain, "Big Data and Ha 	l Analytics", Khanna Book Publis doop", Khanna Book Publishing (hing Co.(P) LTD. Edition 2018 Co.(P) LTD. Edition 2017
Reference Books:		
 Maheshwari Anil, Rakshit, A Mark Gardner, "Beginni Publication,ISBN: 978-1-11 David Dietrich, Barry Hill 	Acharya, "Data Analytics", McGraing R: The Statistical Prog 8-16430-3 ler, "Data Science and Big Dat	aw Hill, ISBN: 789353160258. gramming Language", Wrox ta Analytics", EMC education
services, Wiley publications 4. Ashutosh Nandeshwar, "T	, 2012, ISBN0-07-120413-X ableau Data Visualization Codel	book", Packt Publishing, ISBN
978-1-84968-978-6 5. Luís Torgo, "Data Mining	with R, Learning with Case St	udies", CRC Press, Talay and
Francis Group, ISBN9781486. Carlo Vercellis, "Business Making", Wiley Publication	32234893 Intelligence - Data Mining a s, ISBN: 9780470753866.	nd Optimization for Decision

Mechatronics (Open Elective Course – III)									
COURSE OUTLINE									
Course Title:	Mechat	ronics		ourn	Short	MTX	Cour	se	
Course (descrinti	n •			The.		Coue	•	
In this c	ourse, stu	idents take on the	roles of	mechanic	al engir	eers. com	puter sc	ientists ar	ıd
electrical	l enginee	rs. Students resea	rch dyna	mics, kin	ematics	and sense	ors. Top	ics such a	as
such as	motion 1	planning and obst	acle avoi	dance, ve	elocity a	ind accele	ration,	serial cha	in
mechanis	sms, pnet	imatic actuators, ai	nd drive ci	ircuits are	covered	1.			
Lecture		Hours/week	No. of v	veeks	Total l	nours	Seme	ster credi	ts
		3	1	4		42		3	
Prerequ	isite cour	rse(s):							
Course of	objective	s:							
1. To u	nderstand	the concept and k	ey elemen	ts of Mec	hatronic	s system,	represer	tation into)
block	k diagram	L	-			-	-		
2. To u	inderstand	d principles of sens	sors their c	characteri	stics				
3. To U	Jnderstan	d of various data p	resentatio	n and dat	a loggin	g systems			
4. To U	nderstand	d concept of actuat	or						
5. To U	nderstand	l various case stud	ies of Mee	chatronics	system	S.			
Course of	outcomes	:							
After suc	ccessful c	ompletion of this c	ourse the	student w	ill be ab	le to:			
1. Ident	ification	of key elements of	mechatro	nics syste	m and it	s represen	tation ir	terms of	
block	c diagram	l							
2. Unde	erstanding	g basic principal of	Sensors a	nd Trans	ducer.				
3. Able	e to prepa	re case study of the	e system g	given.					
				~ ~ ~ ~ ~ ~ ~ ~					
		(COURSE	CONTE	NT				
Mechatr	onics			Semeste	er:			/11	
Teaching	g Scheme	e:		Examin	ation S	cheme			
Lectures	S:	3 hours/wee	ek	End Ser	mester l	Exam (ES	E):	60 marks	5
				Duratio	on of ES	E:		03 hours	
				Interna	l Sessio	nal Exam		40 marks	5
				(ISE):					
	Unit–I	: No	of Lectu	res: 08 H	ours	Ι	Marks:	12	
Unit I :I	ntroduct	ion to Mechatron	ics						
Basics	of Meck	natronics System	ns : Def	inition c	of Mech	natronics,	Key e	lements	of
Mechatro	onics Sy	stems, Levels of	mechatr	onics sys	stems, I	Measurem	ent Cha	aracteristic	s,
Example	s of Mec	hatronics systems	in daily li	fe as ,Wa	shing M	achines, D	Digital C	ameras, C	D
Players,	camcorde	ers, Mechatronics	design pr	ocess, ph	ases of	mechatror	nics desi	ign proces	s,

integrated design approach.

	u Servo mechanism iviecham	cal System and Motion, Mass
Inertia and Dashpot, Gears,	types of Gears, Servomech	anism(Concepts and Theory,
Problems).Case study Mechatr	onics Design of Coin Counter/C	oin Separator
Unit–II:	No. of Lectures: 08 Hours	Marks: 12
Overview of Sensors, Transe	lucers and their Characteristic	es Specifications :
Classification and selection of	transducers:	
Force: Load Cell, Cantileve	r Beam (Design aspect examp	ple) Pressure: Strain Gauge,
Piezoelectric Motion: Rotary	and Linear motions, Proximity	sensors Inductive, Capacitive
and Magnetic, sources detec	tors in optical proximity sense	sors. Comparison of Various
proximity sensors Temperat	ure: Optical Fibre and its use	in temperature measurement,
Fibre Optic Temperature sens	ors, Ultrasonic Transducersfor	applications as position, level,
flow measurement. Gas sense	ors, Wind sensors: Gyroscope,	Accelerometer, Magnetometer
(As used in smart phones) S	nart Sensors: Concept, Radiati	on Sensors - Smart Sensors -
Film sensor, IR- temperature s	ensors Introduction to MEMS&	Nano Sensors . Rotary Optical
Encoder		
Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Hydraulic Systems		
Introduction to Hydraulic	Actuators Fluid Power syste	ems, Concept of Actuators,
Classification of Actuators: I	Pneumatic, Hydraulic and Elec	trical Actuators, Fluid Power
systems.		
Physical Components of a H	ydraulic systems, Hydraulic Pu	imps (e.g. Gear Pumps, Vane
Pumps, Piston Pumps and A	xial Piston Pumps), Filters an	d Pressure Regulation, Relief
Valve, Accumulator		
Lin:4 IN/.		
	No. of Lootungs 00 Houng	Montra 12
UIIIt-IV: Droumotic Systems	No. of Lectures: 08 Hours	Marks: 12
Pneumatic Systems	No. of Lectures: 08 Hours	Marks: 12
Pneumatic Systems Introduction to Pneumatic a A	No. of Lectures: 08 Hours ctuators Physical Components o	Marks: 12
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumatic positioner) Air compressor	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuat	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumatic positioner), Air compressor, A	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuator ir Receiver, Air Dryer Air Servic icator and Pressure regulation In	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumat positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuato ir Receiver, Air Dryer Air Servic icator and Pressure regulation In	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumatic positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuato ir Receiver, Air Dryer Air Servic icator and Pressure regulation In ot	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumat positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuato ir Receiver, Air Dryer Air Servic icator and Pressure regulation In ot	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumati positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo Unit–V:	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuator ir Receiver, Air Dryer Air Servic icator and Pressure regulation In ot No. of Lectures: 08 Hours	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study Marks: 12
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumatic positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo Unit–V: Electron-Mechanical Actuate Selection criteria and specifi	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuate ir Receiver, Air Dryer Air Service icator and Pressure regulation In ot No. of Lectures: 08 Hours or:	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study Marks: 12
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumati positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo Unit–V: Electron-Mechanical Actuate Selection criteria and specifi relays and Electromechanical	No. of Lectures: 08 Hours ctuators Physical Components of ic Actuators (e.g. Spring Actuator ir Receiver, Air Dryer Air Service icator and Pressure regulation In ot No. of Lectures: 08 Hours Or: cations of stepper motors, solen relays)	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study Marks: 12 oid valves, relays (Solid State ontrol valve, Single acting and
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumati positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo Unit–V: Electron-Mechanical Actuate Selection criteria and specifi relays and Electromechanical Double acting Cylinders, Elec	No. of Lectures: 08 Hours ctuators Physical Components of ic Actuators (e.g. Spring Actuatori Receiver, Air Dryer Air Service icator and Pressure regulation In ot No. of Lectures: 08 Hours Or: cations of stepper motors, solent relays). Selection Criterion of cutors	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study Marks: 12 oid valves, relays (Solid State ontrol valve, Single acting and ors, Valves: Electro Hydraulic:
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumatic positioner), Air compressor, A regulator and Gauge, Air Lubr of Robotic Pick and Place robo Unit–V: Electron-Mechanical Actuate Selection criteria and specifi relays and Electromechanical Double acting Cylinders. Elect 3/2 Valves 4/2 Valves 5/3 Valves	No. of Lectures: 08 Hours ctuators Physical Components o ic Actuators (e.g. Spring Actuato ir Receiver, Air Dryer Air Service icator and Pressure regulation In ot No. of Lectures: 08 Hours or: cations of stepper motors, solen relays). Selection Criterion of co tro-Pneumatic: Pneumatic Moto lyes Cables: Power cable and Si	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study Marks: 12 oid valves, relays (Solid State ontrol valve, Single acting and ors, Valves: Electro Hydraulic: gnal cables
Pneumatic Systems Introduction to Pneumatic a A Pneumatic Cylinders, Pneumatic positioner), Air compressor, A regulator and Gauge, Air Lubri of Robotic Pick and Place robo Unit–V: Electron-Mechanical Actuate Selection criteria and specifi relays and Electromechanical Double acting Cylinders. Elector 3/2 Valves, 4/2 Valves, 5/3 Va Boat Autopilot High Spee	No. of Lectures: 08 Hours ctuators Physical Components of ic Actuators (e.g. Spring Actuator ir Receiver, Air Dryer Air Service icator and Pressure regulation In ot No. of Lectures: 08 Hours Or: cations of stepper motors, solent relays). Selection Criterion of cattor-Pneumatic: Pneumatic Motor lyes Cables: Power cable and Signature of the stepper motor of the second secon	Marks: 12 f a Pneumatic Systems, or and Spring Actuator with ce Treatment: Air Filter, air take and Air Filter. Case study Marks: 12 oid valves, relays (Solid State ontrol valve, Single acting and ors, Valves: Electro Hydraulic: gnal cables . ar parking systems Engine

Antilock Brake systems (ABS) ,CNC Machines(Only Black Diagram and explaination)

Text Books:

1) W. Boltan — Mechatronics: Electronic Control Systems in Mechanical and Electrical Engineering, 6th Edition, Pearson Education, 2016 '

2)David Alciatore and MaichaelB Histand, —Introduction to Mechatronics and Measurement Systems,4th Edition, Tata McGraw Hill 2013.

Reference Books:

1) Nitaigour P. Mahalik, Mechatronics-Principles, Concepts and Applications, Tata McGraw Hill, Eleventh reprint 2011.

2) Devdas Shetty and Richard A.Kolk, —Mechatronics System Design, Thomson India Edition 2007.

Communication Lab-I										
Course Commu	LA minution Lab I	R COUR	SE OUTL	INE Showt	CLI	Course				
Course Commu	tle. Short CL-1 Course									
Course description:										
The communication Lab –I is based on the application of optical fiber in communication system										
and Digital Image and Video Processing is described.										
Laboratory	boratory Hours/week No. of weeks Total hours Semester credits									
2 14 28 1										
End Semester Exam (ESE) Pattern: Practical (PR)										
Prerequisite cour	rse(s):		•							
Course objective	s:									
1. Student will un	derstand the fundam	nentals and	l advantage	es in opt	ical commu	nication sy	ystem.			
2. Student will lea	rn various types bas	sic propert	ties and trai	nsmissic	on characteri	istic of opt	tical			
fibers.	1. 6	1	. ,	•.1	1	11 1	11.			
3. Student will lea	irn working of optic	al transmi	ssion syste	m with a	analog as we	ell as digit	al data			
A Student will gai	in the knowledge of	various le	usses in ont	tical con	munication	and annly	, the			
remedies to reduc	e losses	various ic	isses in opt		munication	and appry	/ life			
5. To study the im	age fundamentals a	nd mather	natical tran	sforms	necessarv fo	or image				
processing.										
6. To study the im	age enhancement te	echniques.								
7. To study image	restoration procedu	ires.								
8. To study the im	nage compression pr	ocedures.								
~										
Course outcomes				11.						
Upon successful c	completion of lab Co	ourse, stud	lent will be	able to:	. 1	• .•				
1. Able to know t	the fundamentals, ac	Ivantages	and advanc	ces in op	tical commu	unication s	system.			
2. Familiarize with	h types, basic prope	rties and the working of	ransmissio	n charac	teristic of of	plical liber	rs. h analog			
and digital data T	3. Experience with the Knowledge of working of optical transmitter and the receiver with analog									
and digital data. I ransmission.										
5. Review the fun	4. Able to know various losses in optical communication and reduce the losses. 5 Review the fundamental concepts of a digital image processing system and analyze images in									
the frequency don	nain using various th	ransforms.		6.00000	sjovenn und					
6. Evaluate the techniques for image enhancement and image restoration.										
7. Categorize vari	ous compression tec	chniques a	nd interpre	et Image	compression	n standard	s.			
8. Interpret image	segmentation and r	epresentat	ion technic	ques.						
~		B COUR	SE CONT	ENT		<u>.</u>				
Communication	Lab-I	S	emester:			VII				
Teaching Scheme	e:	E	xaminatio	on schen	ne:					
Practical:	2 hours/wee	k E	and Semest	ter Exai	n (ESE): (P	PR) 2	25 marks			

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **29** of **69**

	Internal Continuous Assessment (ICA):	25 marks
		D)
(Note: Minimum EIGHT experiments	to be performed from Group - A / Group Group - A) - B)
1. Electrical Characteristics of different type	LED.	
 To study Laser Diode. Photometric characteristics of LED/Laser. 	Diode (Polar plot/Intensity Measurement	t)
4. NA Measurement for Single/Multi mode,	Graded Index/Single Index optical Fiber	()
5. Attenuation Measurement and bending los	sses measurement of optical fiber	
7. Analog Signal transmission using LED so	urce.	
8. Digital Signal transmission using LED sou	irce.	
9. Study of OTDR		
10. Study of optical connectors.		
C	broup - B	
1. Study of different file formats e.g. BMP, 7	TIFF and extraction of attributes of BMP.	
b. TIFF and extraction of attributes of BMP.		
2. Study of statistical properties- mean, stand	lard deviation, profile, variance and	
a. Study of statistical properties-mean, standa	ard deviation and profile.	
b. Study of statistical properties- variance an	d Histogram plotting.	
3. Histogram equalization and modification of the image	of the image.	
b. modification of the image.		
4. Gray level transformations such as contras	st stretching, negative, power law transfor	mation.
a. Contrast Stretching, negative. b. Power Law Transformation.		
5. Spatial Domain filtering- smoothing and s	harpening filters.	
a. Spatial Domain filtering- smoothing filters	S.	
6. DCT / IDCT of given image.	5.	
a. DCT of given image.		
b. IDCT of given image. 7 Edge detection using Sobel Prewitt and R	oberts operators	
a.Edge detection using Sobel, Prewitt and K	ors.	
b.Edge detection using Roberts operators.		
8. Capturing image through grabber card from 9. Application Development	m camera and Process it.	
a. Biometric Authentication such as Face / F	inger Print / Signature Recognition.	
b.Human Expression Detection.	ΜΑΤΊΑΡ	
10. Creating horsy mage and memig using	WIAILAD.	

Text Book

1. J. Keiser, Fibre Optic communication, McGraw-Hill, 5th Ed. 2013 (Indian Edition).

2. T. Tamir, Integrated optics, (Topics in Applied Physics Vol.7), Springer-Verlag, 1975.

3. J. Gowar, Optical communication systems, Prentice Hall India, 1987.

4. S.E. Miller and A.G. Chynoweth, eds., Optical fibers telecommunications, Academic Press, 1979.

5. Govind Agrawal, Nonlinear fibre optics, Academic Press, 2nd Ed. 1994.

6. Govind Agrawal, Fiber optic Communication Systems, John Wiley and sons, New York, 1997.

7. Rafel C. Gonzalez and Richard E. Woods, 'Digital Image Processing', Pearson Education Asia, Third Edition, 2009.

8. S. Jayaraman, E.Esakkirajan and T.Veerkumar, "Digital Image Processing" TataMcGraw Hill Education Private Ltd, 2009.

Reference Books:

1.John M. Senior, "Optical Fiber Communication (Principles & Practice)", Pearson Education.2. Anil K. Jain, "Fundamentals and Digital Image Processing", Prentice Hall of India Private Ltd, Third Edition

3. S. Sridhar, "Digital Image Processing", Oxford University Press, Second Edition, 2012.4. Robert Haralick and Linda Shapiro, "Computer and Robot Vision", Vol I, II, Addison Wesley, 1993.

Guide lines for ICA:

Students must submit ICA in the form of journal. Each assignment should be well documented. Faculty in charge will assess the assignments continuously and grade or mark each assignment on completion date declared for each assignments.

Guidelines for ESE:

ESE will be based on the Laboratory assignments submitted by the students in the form of journal. In the ESE (PR), the students may be asked to perform the practical assignment with minor modification.

Evaluation will be based on the paper work of algorithm, understanding of the logic and the syntax, quality of the program, execution of the program, type of input and output for the program.

Digital Signal Processing Lab								
~			<u>B COURS</u>	SE OUTI			~	
Course	Digital S	Signal Processing L	Lab Short DSPL Course					
Title:	itle: Code:							
Course	Course description:							
Digital S	Digital Signal Processing Lab objectives is practical implementation of the convolution,							
correlation, DFT, IDFT, Block convolution, Signal smoothing, filtering of long duration signals, and Spectral analysis of signals								
Laborat	Laboratory Hours/week No. of weeks Total hours Semester credit							ter credits
		2	14	4		28		1
End Sen	nester Exa	am (ESE) Pattern:	_	Practic	al (PR)			
Prerequ	isite cour	se(s):			()			
Signal ar	nd System							
Course	bjectives							
1. Design	n and imp	lement a DSP syster	n using too	ols like M	IATLAB	1		
2. Analy	ze and des	scribe the functional	ity of a rea	al world I	DSP syste	em		
3. Work	in teams t	o plan and execute t	the creation	n of a cor	mplex DS	SP system		
4. Apply	DSP system	em design to real we	orld applic	ations an	d demon	strate Finit	te word le	ngth
effect.		-						-
5. To stu	dy the arc	hitecture of DSP pro	ocessor.					
Course	outcomes							
Upon su	ccessful co	ompletion of lab Co	urse, stude	nt will be	e able to:			
1. Under	stand the l	handling of discrete	/digital sig	nals usin	g MATL	AB		
2. Under	stand the l	basic operations of S	Signal proc	cessing				
3. Analy	se the spec	ctral parameter of w	indow fun	ctions				
4. Design	n IIR, and	FIR filters for band	pass, band	l stop, lo	w pass ai	nd high pas	ss filters.	
5. Design	n the signa	al processing algorit	hm using l	MATLA	В			
		LAI	B COURS	E CONT	TENT			
Digital S	Signal Pro	cessing Lab	Se	mester:			V	11
Teachin	g Scheme		Ex	aminati	on schen	ne:		
Practica	l:	2 hours/weel	k En	d Semes	ster Exar	n (ESE): (PR)	25 marks
	Internal Continuous Assessment 25 marks							25 marks
			``	,				
1		(Note: Minimum	EIGHT ex	periment	ts to be p	erformed)		
	nd DFI /	IDFI OF given DT's	ignai					
2. Impl	ementation	n of FFT of given se	equence					
3. Deter	rmination	of Power Spectrum	of a given	signal				
4. Imple	ementation	n of LP and HP FIR	filter for a	ı given se	equence			

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **32** of **69**

- 5. Implementation of LP and HP IIR filter for a given sequence
- 6. Implementation of Decimation Process
- 7. Implementation of Interpolation Process
- 8. Implementation of I/D sampling rate converters
- 9. To study the effect of different windows on FIR filter response.
- 10. Design Butterworth filter using bilinear transformation method for LPF.
- 11. Study of Code Composer Studio to demonstrate / implement DFT / IDFT
- 12. Study of Code Composer Studio to demonstrate / implement FFT /IIT

Text Books:

1. S. Salivahanan, "Digital Signal Processing", McGraw Hill Education; 3rd edition, 2017.

2. P. Ramesh Babu, "Digital Signal Processing", Scitech Publications (India) Pvt.Ltd., 6th edition, 2014.

3. Emmanuel C. Ifeachor, Barrie W. Jervis, "Digital Signal Processing", A Practical Approach by, Pearson Education

4. Tarun Kumar Rawat, Digital Signal Processing", Oxford University Press, 2015.

Reference Books:

1. Proakis J., Manolakis D., "Digital Signal Processing", 4th Edition, Pearson Education.

2. Sanjit K. Mitra , Digital Signal Processing – A Computer Based Approach – 4th Edition McGraw Hill Education (India) Private Limited.

3. Oppenheim A., Schafer R., Buck J., "Discrete Time Signal Processing", 2nd Edition, Pearson Education.

4. B. Venkata Ramani and M. Bhaskar, "Digital Signal Processors, Architecture, Programming and Applications", McGraw Hill Second Edition.

5. L. R. Rabiner and B. Gold, "Theory and Applications of Digital Signal Processing", Prentice-Hall of India, 2006.

6. TMS320C67XX User manual: www.ti.com .

Guide lines for ICA:

Students must submit ICA in the form of journal. Each assignment should be well documented. Faculty in charge will assess the assignments continuously and grade or mark each assignment on completion date declared for each assignments.

Guidelines for ESE:

ESE will be based on the Laboratory assignments submitted by the students in the form of journal. In the ESE (PR), the students may be asked to perform the practical assignment with minor modification.

Evaluation will be based on the paper work of algorithm, understanding of the logic and the syntax, quality of the program, execution of the program, type of input and output for the program.

	Project	t (Stage – I)					
Course Title:	Project (Stage	t SI Code:					
Course description:			THU:	I		I	
Project represents the culm project offers the opportunit emphasis is necessarily on presentation spheres.	ination of study t y to apply and ex facilitating stude	owards the tend materia nt learning	Bachelor I learned t in technic	of Engine hroughout al, project	ering of the pr manag	degree. The ogram. The gement and	
Laboratory	Laboratory Hours/wee No. of Total hours Semester						
	<u>k</u>	weeks	1	(0)		credits	
End Somester Even (ESE)	Dottorn:	14		0ð		0	
End Semester Exam (ESE) Prerequisite course(s):	Pattern:	0	rai (OR)				
Course objectives:							
approach. 4. To demonstrate profess relate engineering issues	ionalism with eth to broader societa	nics; presen l context.	t effective	commun	ication	ı skills and	
Course outcomes:							
Upon successful completion	of lab Course, stu	dent will be	able to:	• •			
1. Demonstrate a sound tec.	hnical knowledge	of their sele	cted projection	et topic.			
3 Design engineering solut	tions to complex p	roblems util	izing a sys	tems appro	oach		
4. Conduct an engineering	project	10010110 001		or of the second s			
5. Demonstrate the knowled	dge, skills and atti	tudes of a pr	ofessional	engineer.			
		DE CONT					
Project (Stage I)	LAB COUP	Semeste	EN I			VII	
Toject (Stage – 1) Teaching Scheme:		Fyamin	ation Sch	ama•		V 11	
Practical.	17 hours/week	End Ser	nester Fy	eme.		50 marks	
Tractical.	12 HUI 5/ WEEK	Interna Assessn	l Continue nent (ICA)	ous):		50 marks	
At the final year the student The project work spans bo complete the partial work,	th the semesters. and by the end	a project in a By the end of Semeste	a group of l of Seme er –VIII t	maximum ster –VII he studen	the stu the stu ts sha	5 students. udents shall 11 complete	

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **34** of **69**

remaining part of the project. Assessment for the project shall also include presentation by the

students. Each teacher can guide maximum 04 groups of projects.

The students should take project work, as specified in the curriculum, based on the knowledge acquired by the students during the degree course till Semester – VI and/or during Internship. The project must be practical or involving both theoretical and practical work to be assigned by the Department. The work may also be Study/Survey/Design or R&D work. The work may also be on specified task or project assigned to the students during Internship.

Project (Stage – I) may involve literature survey, problem identification, design methodology, collection of data, conduction of experiments and analysis etc. The project work shall involve sufficient work so that students get acquainted with different aspects of design, analysis and fabrication. Approximately more than 50% work should be completed by the end of Semester – VII. Each student group should submit partial project report in the form of thermal bound at the end of Semester –VII. Assessment for the project shall also include presentation by the students.

Each student group is required to maintain separate log book for documenting various activities of the project.

Suggestive outline for the partial project report is as follows.

Abstract

Chapter 1. Introduction

- Background / Literature Survey.
- Motivation
- Problem Definition
- Scope
- Objective
- Selection of Life cycle Model for Development
- Organization of Report
- Summary

Chapter 2. Project Planning and Management

- Feasibility Study
- Risk Analysis
- Project Scheduling
- Effort Allocation
- Cost Estimation
- Summary

Chapter 3. Analysis

- Requirement Collection and Identification
- H/w and S/w Requirement (Data, Functional and Behavioral)
- Functional and non-Functional Requirements
- Software Requirement's Specification (SRS)

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **35** of **69**

• Summary

Chapter 4. Design

- System Architecture and Design Methodology.
- Circuit Diagram and Data Flow Diagram / Flow chart.
- UML Diagrams (Use case, Class, Sequence, Component, Deployment, State chart, Activity diagram etc.)
- Summary

Chapter 5. Result, Conclusion & Future Work

Bibliography

Index

Appendix

Guide lines for ICA:

The Internal Continuous Assessment (ICA) for project shall be based on continuous evaluation of students' performance, active participation, knowledge / skill acquired throughout semester and presentation by the students. The assessment shall be done jointly by the guide and departmental committee. A three-member departmental committee including guide, appointed by Head of the department, shall be constituted for the assessment. The assessment for Project (Stage – I) in Semester – VII shall be as per the guidelines given in Table – A.

				Tal	ble – A						
			Assessment by Guide Assessment								
				Departr	nental						
			Committee								
Sr	Nam	Attendan	Problem	Literat	Methodol	Rep	Depth of	Presentat	Tot		
	e of	ce /	Identifica	ure	ogy /	ort	Understan	ion	al		
Ν	the	Participa	tion /	Survey	Design		ding				
0.	Stude	tion	Project								
	nt		Objective								
			S								
	Marks	5	5	5	5	5	10	15	50		

Guidelines for ESE:

In End Semester Examination (ESE), the student may be asked for presentation / demonstration and questions on Project. Evaluation will be based on answers given by students in oral examination.

Essence of Indian Traditional Knowledge

Course objective:

The course aims at imparting basic principles of thought process, reasoning and inferencing, sustainability is at the core of Indian traditional knowledge system connecting society and nature. Holistic life style of yogic science and wisdom capsules in Sanskrit literature are also important in modern society with rapid technological advancements and societal disruptions. The course focuses on introduction to Indian knowledge systems, Indian perspective of modern scientific world-view, and basic principles of yoga and holistic health care system, Indian artistic tradition.

Outcomes:

Ability to understand, connect up and explain basics of Indian traditional knowledge in modern scientific perspective.

Course Contents:

Introduction to:

- 1. Ayurveda, Charaka Samhita, Sushruta Samhita Principles and Terminology: Vatha, Pitha, Kapha, Ether, Earth, Water, fire and Air Tatva, Influence of these on human health.
- 2. Architecture: Temple Architecture, Indo Islamic Architecture, Mughal Architecture, Indian Rock Cut Architecture, Vastu Shastra.
- 3. Importance of Yoga for Physical and Mental health, Yoga Sutras of Patanjali, Meditation, International day of Yoga.
- 4. Indian Classical Music, Hindustani and Carnatic Music, Raga, Tala, Dhrupad, Khyal, Tarana and Thumri, Sangitaratnakara, Work of Tansen, Purandara Dasa, Bhimsen Joshi, Ustad Bismillah Khan, Bal Gandharva etc.

Folk Music and Dances such as Rajasthani, Marathi, Gujrati, Punjabi etc.

5. Indian Classical Dances: Shastriya Nritya, Natya Shastra, Bharatanatyam, Kathak, Kuchipudi, Odissi, Kathakali, Sattriya, Manipuri, Mohiniyattam and Chhau dance forms.

References:

- 1. Amit Jha, "Traditional knowledge system in India", Atlantic Publisher, ISBN 978812691223
- 2. Basanta Kumar Malhotra, "Traditional Knowledge System and Technology in India", Pratibha Prakashan, ISBN 8177-023101
- 3. Nitin Singhania, "Indian Art and Culture", McGraw Will Publication.
- 4. Dr. Bramhand Tripathi, "Charak Sanhita", Chaukhambha Surbharti Prakashan, ISBN: 9381-4847-59
- 5. Dr. Anantram Sharma, "Sushrut Samhita"
- 6. Valiatham M.S., "An Introduction to Ayurveda" Orient Bkackswan Publication.
- 7. Valiathan M.S., "The legacy of Charaka" University Press.
- 8. Valiathan M.S., "The legacy of Susruta" University Press.
- 9. Garg Maheshwari, "Ancient Indian Architecture", CBS Publisher and Distributors
- 10. Sharmin Khan, "History of Indian Architecture", CBS Publisher and Distributors.

- 11. Bindia Thapar, Surat ku. Manto, Suparana Bhalla, "Introduction to Indian Architecture", Periplus Editions Ltd.
- 12. Vijay Prakash Singh, "An Introduction to Hindustani Classical Music", Lotus Publisher
- 13. Leeta Venkataraman, Avinash Pasricha, "Indian Classical Dance" Lustre Publisher
- 14. Shovana Narayan, "Indian Classical Dances" New Dawn Press
- 15. Kapila Vatsyayan, "Indian Classical Dance", Ministry of Information and Broadcasting, Govt of India.
- 16. Mahadevan Ramesh, "A Gentle introduction to Carnatic Music", Oxygen books Publisher.

Kavayitri Bahinabai Chaudhari NORTH MAHARASHTRA UNIVERSITY, JALGAON (M.S.)

Final Year Engineering (Electronics and Telecommunication Engineering) Faculty of Science and Technology

SYLLABUS Semester – VIII W.E.F. 2020 – 21

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **39** of **69**

	Computer Network								
			COUR	SE OUTLIN	E		-		
Course	Comput	er Network			Short	CN	Cours	e	
Title:					Title:		Code:		
Course	descriptio	n:							
This cou	rse descril	bes the basics	concept of C	Computer Net	work, ar	chitecture,	protocol	and its	
Applicat	ions.	 , .	- NT	e 1	T (11		G		
Lecture		Hours/week	<u> </u>	of weeks	Total I	iours	Semes	ter credits	
		03		13		42		_	
Prerequ	Prerequisite course(s): Analog & Digital Communication, Signal and System								
Course	objectives	•		<u> </u>					
1. To stu	dy the bas	acs concept o	f Computer	Network.		1			
2. To Un	derstand t	he principle of	of various typ	bes of Compu	ter Netw	ork.			
3.10 far	niliarize tr	he concept of	Various Prot	ocols.		O_{1}	a		
4. Provid	e strong I	oundation for	understandi	ng of Conges	tion and	Quality of a	Service.		
S.10 Lea		work Securit	y & Authenti	Ication Protoc	:015.				
After su	possful co	mpletion of t	his course th	a student will	ba abla	to			
1 Descri	he the has	vic concepts o	f Computer]	Vetwork syste		10.			
2 Apoly	zo vorious	types of nois	r computer r	Network syste					
2. Anary	be the co	noont of airou	y protocols.	and nealest av	vitahina				
J.Deschi	the concer	ncept of circu	tion control (and toohniquo	a to imp	rovo quality	, of comi		
4.Appry	une concej	pt for Conges		So ourity on d		Zou Alcomit	y OI SELVI	ce.	
5. 10 des	scribe the	modern trend	s III Network	Security and	Public	xey Algorit			
			COUR	SE CONTEN	ЛТ				
Comput	er Netwo	rk	00011	Semeste	er:	VI	Π		
Teachin	σ Scheme	•		Examin	ation sc	heme			
Lecture	<u>s 03</u>	3 hour	s/week	End sen	nester er	zam (FSF)	•	60 marks	
	5. 05	5 11001	5/ WCCK	Duratio	n of FSI		•	00 marks	
				Internel		ol Evome ((ISF).	40 mortes	
Theit Te			Nooflo				(ISE). Aordrae 1	-+0 mai K5	
Unit-1:	ation to 1	Commutor N	INO. OI Le	ctures: 09 H	ours	IN Laturante ac	Marks: 1	<u>Z</u>	
switches		N WAN IS	O/OSI Refer	ence Model	TCP/IP	Reference	Model (S. $\Pi UDS \propto$	
unguide	, LAN, MA	Transmiss	ion media: '	Twisted pair	coavial	cable Fib	ver ontic	s Wireless	
Transmi	sion Ra	dio transmiss	sion Micros	vave transm	ission 1	nfrared Tr	on optic	ion ISDN.	
Narrowh	and ISDN	J. ISDN serv	vices System	n architectur	e Inter	face Broad	lband IS	DN ATM	
reference	e model.			in urenneeetur	<i>c, mcn</i>	Liver Dioue		21, 1111	
Unit_II:	1110 4 011		No. of Le	ctures: 09 H	ours	Ν	Aarks: 1	2	
Data Li	nk Laver	-Design issue	es. Framing	Error and F	Flow Co	ntrol Flow	control	– Data Link	
Protocol	s: Unrestr	icted Simplex	Protocol, st	op and wait	protocol	Simplex F	Protocol	for a Noisv	
Channel	Sliding V	Vindow Prot	ocols: One b	it sliding win	dow, Us	ing Go-Ba	ck n, Pro	tocol using	
Selective	Repeat.	HDLC, Multi	iple Access	Protocols: AI	LOHA, O	Carrier Sen	se Multi	ple Access.	

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **40** of **69**

CSMA,CSMA/CD,CSMA/CA							
Unit–III:	No. of Lectures: 08 Hours	Marks: 12					
Network Layer -Design Issue of Network Layer, Comparison of Virtual circuit and Datagram							
subnets, Routing Algorithms, Shortest Path Routing, Flooding, Hierarchical Routing, Broad Cast							
Routing, Multicast routing, Co	ongestion Control Algorithms, C	Congestion Prevention Policies,					
Choke Packets, Internet Protoco	l: Internetworking, IPV4 Datagra	m, IPV6 Addresses					
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12					
Transport Layer -ARP,RAR	P, ICMP,IGMP, Transmission	Control Protocol(TCP), User					
Datagram Protocol(UDP), Co	ngestion Control of Transport L	ayer, Quality of Service(QoS),					
Techniques to improve QoS, Re	emote Procedure Call						
	Terrer Terrer Contractor Cont						
Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Unit–V: Application Layer- Domain	No. of Lectures: 08 Hours Name System(DNS), SNMP, Net	Marks: 12 etwork Security, Cryptography,					
Unit–V: Application Layer- Domain D Public key algorithms, Digital	No. of Lectures: 08 Hours Name System(DNS), SNMP, Ne Signature, Authentication Proto	Marks: 12 etwork Security, Cryptography, pcols, Firewalls, Time division					
Unit–V: Application Layer- Domain D Public key algorithms, Digital switching, Space division switch	No. of Lectures: 08 Hours Name System(DNS), SNMP, Ne Signature, Authentication Proto hing.	Marks: 12 etwork Security, Cryptography, pcols, Firewalls, Time division					
Unit–V: Application Layer- Domain I Public key algorithms, Digital switching, Space division switch Text Books:	No. of Lectures: 08 Hours Name System(DNS), SNMP, Ne Signature, Authentication Proto hing.	Marks: 12 etwork Security, Cryptography, ocols, Firewalls, Time division					
Unit–V: Application Layer- Domain Public key algorithms, Digital switching, Space division switch Text Books: 1. Andrew S Tanebaum - Comp	No. of Lectures: 08 Hours Name System(DNS), SNMP, Ne Signature, Authentication Proto hing. uter Networks, 4th Ed. PHI/ Pears	Marks: 12 etwork Security, Cryptography, ocols, Firewalls, Time division son education.					
Unit–V: Application Layer- Domain D Public key algorithms, Digital switching, Space division switch Text Books: 1. Andrew S Tanebaum - Comp 2. Behrouz A Forouzan - Data C	No. of Lectures: 08 Hours Name System(DNS), SNMP, Ne Signature, Authentication Proto hing. uter Networks, 4th Ed. PHI/ Pears Communication and Networks, 3rd	Marks: 12 etwork Security, Cryptography, ocols, Firewalls, Time division son education. d Ed. TMH.					
Unit–V: Application Layer- Domain I Public key algorithms, Digital switching, Space division switch Text Books: 1. Andrew S Tanebaum - Comp 2. Behrouz A Forouzan - Data C Reference Books:	No. of Lectures: 08 Hours Name System(DNS), SNMP, Net Signature, Authentication Proto hing. uter Networks, 4th Ed. PHI/ Pears Communication and Networks, 3rd	Marks: 12 etwork Security, Cryptography, ocols, Firewalls, Time division son education. 1 Ed. TMH.					
Unit–V: Application Layer- Domain I Public key algorithms, Digital switching, Space division switch Text Books: 1. Andrew S Tanebaum - Comp 2. Behrouz A Forouzan - Data C Reference Books: 1. Irvine Olifer - Computer Ne	No. of Lectures: 08 Hours Name System(DNS), SNMP, Net Signature, Authentication Proto hing. uter Networks, 4th Ed. PHI/ Pears Communication and Networks, 3rd tworks: Principles, Technology and	Marks: 12 etwork Security, Cryptography, ocols, Firewalls, Time division son education. d Ed. TMH. nd Protocols, Wiley India.					
Unit–V: Application Layer- Domain I Public key algorithms, Digital switching, Space division switch Text Books: 1. Andrew S Tanebaum - Comp 2. Behrouz A Forouzan - Data C Reference Books: 1. Irvine Olifer - Computer Ne 2. William Stalling – Data and	No. of Lectures: 08 Hours Name System(DNS), SNMP, Net Signature, Authentication Proto hing. uter Networks, 4th Ed. PHI/ Pears Communication and Networks, 3rd tworks: Principles, Technology an Computer communications, 7th H	Marks: 12 etwork Security, Cryptography, ocols, Firewalls, Time division son education. d Ed. TMH. nd Protocols, Wiley India. Ed. PHI					

	Microwave Theory and Techniques								
COURSE OUTLINE									
Course	Microw	ave Theory a	nd Te	chniques		Short	МТТ	Course	x
Title:	1/1101 0 ///	uve meory u	nu i c	emiques		Title:		Code:	
Course description:									
This co	urse is de	esigned to lav	the f	oundation	of micro	owave	theory. The	e various	modes of
propagat	ions throu	igh wave guid	des are	e included	Students	will bec	come familia	ar with th	ne usage of
active ar	active and passive components of microwave systems. Measurements of various parameters of								
microwa	microwave systems and Modern trends of microwave engineering.								
Lecture	· · ·	Hours/weel	K	No. of w	reeks	Total l	nours	Semest	er credits
		03		1	3		42		
Prereau	isite cour	rse(s):			-				
Electror	nagnetic f	heory Wave i	nronao	ation An	ennas and	Semico	nductor phy	vsics	
Course	hiectives	<u>neory, wave j</u>	propug	, ution , 7 m	ionnus una	bennee	inductor pir	5105	
1. To stu	dv the bas	sics concept	of va	rious mod	e of propa	gation i	n waveguide	e	
2. To Un	derstand f	the fundament	tals of	microway	e passive	compon	ents.		
3. To far	niliarize tl	he concept of	micro	wave activ	e devices.	••••••••••••••••••••••••••••••••••••••	•		
4. Provid	le strong f	foundation for	under	standing o	of microwa	ave mea	surement an	d microv	vave
anten	na.			U					
5. To Le	arn the mo	odern trends in	n micr	owave En	gineering.				
Course	outcomes	:							
After suc	ccessful co	ompletion of t	his cou	urse the st	udent will	be able	to:		
1 Desci	ribe the b	basic concepts	and a	oplication	s of micro	wave sy	stems.		
2. Analy	ze, test an	d use various	passiv	e microwa	ave compo	onents fo	or different a	applicatio	ons.
3. Descri	ibe the co	oncept of mic	rowave	e active t	ubes.				
4. Apply	y the conc	ept for measu	remen	t of vario	ous parame	eters of 1	nicrowave s	system.	
5. To des	scribe the	modern trend	s in mi	crowave e	engineerin	g.		5	
					0	0			
			C	COURSE	CONTEN	T			
Microw	ave Theor	ry and Techn	iques		Semeste	r:	VII	Ι	
Teachin	g Scheme				Examina	ation scl	heme		
Lectures	s: 03	3 hour	s/weeł	ζ.	End sem	nester ex	am (ESE):		60 marks
					Duratio	n of ESI	E:		03 hours
					Internal	Session	al Exams (ISE):	40 marks
Unit_I.			No	of Lectu	res: 09 Ho		N	larks: 12	<u>)</u>
Introduc	ction to N	Microwaves-F	History	of Micro	waves. N	ficroway	ve Frequenc	v bands:	General
Applicat	ion of N	ficrowave. A	dvanta	ges-Recta	ingular. (Circular.	& Disady	antages.	Types of
wavegui	de. Mathe	ematical Mod	lel of	Microway	ve Transm	nission-C	Concept of	Mode. F	Features of
TEM, T	E and TM	I Modes, Mat	hemat	ical deriva	tion of 7	TEM Mo	ode, TM Mo	ode, TE	Mode, Cut
off freq	uency ,Pl	hase velocity.	, Grou	ip Veloci	ty ,Guide	e wave	elength, wa	ve Impe	edance for
rectangu	lar waveg	guide.		-				Ť	
Unit-II:			No.	of Lectu	res: 09 Ho	ours	Ν	Iarks: 12	2

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **42** of **69**

Passive Microwave Devices-	Microwave passive components	E Plane Tee H- Plane Tee					
Magic Tee, Directional Coupler, Analysis with S Matrix, Attenuator, Frequency meter, Ferrite							
Devices-Isolator, circulator, Microwave filters, Matched Terminations, waveguide Bends, Twist							
Unit–III:	No. of Lectures: 08 Hours	Marks: 12					
Active Microwave Devices: N	Aicrowave tubes: Klystron, TW	T, Backward Wave Oscillator,					
Magnetron. Gunn Diodes, Tunn	el diode, PIN diodes, Varactor di	odes, IMPATT and TRAPATT					
diodes, Parametric Amplifiers.							
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12					
Microwave Measurements:	Frequency-Electronics Method,	Mechanical Method, Power,					
VSWR, attenuation, Impedance	measurement. Microwave Ante	ennas: Fundamental parameters					
of antennas, Horn antenna, Para	bolic reflector with all types of fe	eding methods, slotted antenna,					
Lens antenna,		-					
Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Unit–V: Modern Trends in Microwave	No. of Lectures: 08 Hours s Engineering	Marks: 12					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil	Marks: 12 applications of microwaves,					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility	Marks: 12 applications of microwaves, (EMI / EMC), Monolithic					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF M	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component	Marks: 12 applications of microwaves, (EMI / EMC), Monolithic (s,					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF M Microwave Systems	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component	Marks: 12 applications of microwaves, (EMI / EMC), Monolithic s,					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF M Microwave Systems Wireless Communications syste	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component m, Radar Systems, Radiometer Systems	Marks: 12 applications of microwaves, y (EMI / EMC), Monolithic rs, ystems,					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF M Microwave Systems Wireless Communications syste Text Books:	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component m, Radar Systems, Radiometer Systems	Marks: 12 applications of microwaves, y (EMI / EMC), Monolithic ss, ystems,					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF M Microwave Systems Wireless Communications syste Text Books: 1. Samuel Liao, Microwave Dev	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component m, Radar Systems, Radiometer Systems vices and Circuits, Pearson Educat	Marks: 12 applications of microwaves, y (EMI / EMC), Monolithic s, ystems, tion, 3/e.					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication , RF M Microwave Systems Wireless Communications syste Text Books: 1. Samuel Liao, Microwave Dev 2. Annapurna Das, Sisir Das, Mi	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component m, Radar Systems, Radiometer Sy vices and Circuits, Pearson Educat icrowave Engineering, TMH, 3/e	Marks: 12 applications of microwaves, y (EMI / EMC), Monolithic rs, ystems,					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF M Microwave Systems Wireless Communications syste Text Books: 1. Samuel Liao, Microwave Dev 2. Annapurna Das, Sisir Das, Mi Reference Books:	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component m, Radar Systems, Radiometer Sy vices and Circuits, Pearson Educat icrowave Engineering, TMH, 3/e	Marks: 12 applications of microwaves, y (EMI / EMC), Monolithic rs, ystems, tion, 3/e.					
Unit–V: Modern Trends in Microwave Effect of Microwaves on hu Electromagnetic interference Microwave IC fabrication, RF I Microwave Systems Wireless Communications syste Text Books: 1. Samuel Liao, Microwave Dev 2. Annapurna Das, Sisir Das, Mi Reference Books: 1. Robert E Collin, Foundation	No. of Lectures: 08 Hours s Engineering man body, Medical and Civil / Electromagnetic Compatibility MEMS for microwave component m, Radar Systems, Radiometer Sy vices and Circuits, Pearson Educat icrowave Engineering, TMH, 3/e s for Microwave Engineering, Wi	Marks: 12 applications of microwaves, y (EMI / EMC), Monolithic s, ystems, tion, 3/e.					

3. Manojit Mitra, Microwave Engineering, Dhanpat Rai, 3/e.

COURSE OUTLINE Course Adaptive Digital Signal Processing Short ADSP Course Title: Course Code: Code: Adaptation is accomplished by adjusting the free parameters of a filter according to the input data to achieve the desired output. Such adaptive algorithms are frequently encountered in many signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing. Semester credits Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 3 Prerequisite course(s): Signal Processing Signal Processing Signal and System , Digital Signal Processing Course objectives: 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters.	Adaptive Digital Signal Processing								
COURSE OUTLINE Course Adaptive Digital Signal Processing Short Title: ADSP Course Course Code: Adaptation is accomplished by adjusting the free parameters of a filter according to the input data to achieve the desired output. Such adaptive algorithms are frequently encountered in many signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing. Semester credits Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 3 Prerequisite course(s): Signal and System , Digital Signal Processing Semester credits 1. To understand Linear Prediction and Optimum Linear Filters. . . . 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting FIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 2. Learn Kalman Filters. . . .	(Frolessional Elective Course – V)								
Course Title: Adaptive Digital Signal Processing Short Title: ADSP ADSP Course Code: Course description:	COURSE OUTLINE								
Title:Title:Code:Course description:Adaptation is accomplished by adjusting the free parameters of a filter according to the input data to achieve the desired output. Such adaptive algorithms are frequently encountered in many signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing.Semester creditsCourse identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing.LectureHours/weekNo. of weeksTotal hoursSemester credits0314403Prerequisite course(s):Signal and System , Digital Signal ProcessingCourse objectives:To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters.1. To understand Linear Prediction and Optimum Linear Filters.2.Learn Algorithms for Adapting FIR Filters.3. Learn Algorithms for Adapting HIR Filters.4. Understand Frequency-Domain and Subband Adaptive Filter.5. Learn Kalman Filters.2.	Course	Adaptiv	e Digital Sigr	nal Processi	ng	Short	ADSP	Course	
Course description: Adaptation is accomplished by adjusting the free parameters of a filter according to the input data to achieve the desired output. Such adaptive algorithms are frequently encountered in many signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing. Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 2. Learn Kalman Filters.	Title:				_	Title:		Code:	
Adaptation is accomplished by adjusting the free parameters of a filter according to the input data to achieve the desired output. Such adaptive algorithms are frequently encountered in many signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing.LectureHours/weekNo. of weeksTotal hoursSemester credits0314403Prerequisite course(s):Signal and System , Digital Signal ProcessingCourse objectives:To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters.1. To understand Linear Prediction and Optimum Linear Filters.2. Learn Algorithms for Adapting FIR Filters.3. Learn Algorithms for Adapting IIR Filters.4. Understand Frequency-Domain and Subband Adaptive Filter.5. Learn Kalman Filters.	Course d	descriptio	n:						
data to achieve the desired output. Such adaptive algorithms are frequently encountered in many signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing.LectureHours/weekNo. of weeksTotal hoursSemester credits0314403Prerequisite course(s):Signal and System , Digital Signal ProcessingCourse objectives:To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters.1. To understand Linear Prediction and Optimum Linear Filters.2. Learn Algorithms for Adapting FIR Filters.3. Learn Algorithms for Adapting IIR Filters.4. Understand Frequency-Domain and Subband Adaptive Filter.5. Learn Kalman Filters.	Adaptati	on is acco	omplished by	adjusting th	ne free param	eters of	a filter acc	ording to	the input
signal processing and machine learning algorithms. The adaptive signal processing course provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing. Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 3 Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 7.	data to a	chieve the	desired outp	ut. Such ada	ptive algorith	ms are fi	requently er	ncountered	in many
provides a comprehensive treatment of mathematical signal processing algorithms for designing optimum and linear filters; designing, implementing, and analyzing adaptive filters applied to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing. Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 3 Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 7.	signal pi	rocessing	and machine	e learning a	lgorithms. T	he adapt	tive signal	processin	g course
optimitin and intear inters, designing, implementing, and analyzing adaptive inters appred to system identification, inverse modeling (deconvolution), adaptive control, and interference cancellation; and some selected emerging topics in signal processing. Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 3 Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 7.	optimum	a compre	nensive treation of the second s	igning impl	ementing and	d analyz	ing adaptiv	unnis ior (a filters a	nolied to
Course objectives: Signal Processing To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters.	system i	dentificat	ion inverse	modeling (a	deconvolution	u anaryz i) adapt	ive control	and int	erference
Lecture Hours/week No. of weeks Total hours Semester credits 03 14 40 3 Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 7. Learn Kalman Filters.	cancellat	ion: and s	ome selected	emerging to	pics in signal	processi	19.	, and me	circicitee
03 14 40 3 Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters.	Lecture		Hours/week		of weeks	Total h	ours	Semeste	r credits
Prerequisite course(s): Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters.			03	14		40		3	
Signal and System , Digital Signal Processing Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters.	Preregui	isite cour	se(s).					-	
 Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 	Signal ar	nd System	. Digital Sigr	al Processin	g				
Course objectives: To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters.	Signal an		, 218100 2181		0				
 To provide rigorous foundations in multirate signal processing, power spectrum estimation and adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 	Course of	objectives	•						
 adaptive filters. 1. To understand Linear Prediction and Optimum Linear Filters. 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 	To provi	de rigorou	us foundation	s in multirat	e signal proce	essing, p	ower spect	rum estim	ation and
 To understand Linear Prediction and Optimum Linear Filters. Learn Algorithms for Adapting FIR Filters. Learn Algorithms for Adapting IIR Filters. Understand Frequency-Domain and Subband Adaptive Filter. Learn Kalman Filters. 	adaptive	filters.	·	10	T. T	7.1.			
 2. Learn Algorithms for Adapting FIR Filters. 3. Learn Algorithms for Adapting IIR Filters. 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 	1. To und	derstand L	inear Predicti	on and Optim	mum Linear F	filters.			
 4. Understand Frequency-Domain and Subband Adaptive Filter. 5. Learn Kalman Filters. 	2. Learn	Algorithm	is for Adaptin	ig FIR Filter	S.				
5. Learn Kalman Filters.	4 Under	Algorium stand Free	is for Adaptin	ig IIK Fillers	and Adaptive	Filter			
	5 Learn	Kalman F	ilters			I IIICI.			
	5. Louin	I cumun I	interis.						
Course outcomes:	Course o	outcomes							
After successful completion of this course the student will be able to:	After suc	cessful co	mpletion of t	his course th	e student will	be able	to:		
1. To Analyze and implement Wiener filters	1. To An	alyze and	implement W	viener filters					
2. To Analyze and implement LMS and normalized LMS Adaptive filters signals.	2. To An	alyze and	implement L	MS and norr	nalized LMS	Adaptive	e filters sign	als.	
3. To Analyze and implement frequency domain Adaptive filters	3. To An	alyze and	implement fr	equency don	nain Adaptive	filters			
4. To Analyze and implement Recursive Adaptive filters	4. To An	alyze and	implement R	ecursive Ada	aptive filters				
5. To apply adaptive signal processing to various applications	5. To app	oly adaptiv	ve signal proc	essing to var	rious applicati	ons			
COURSE CONTENT									
Name of the Subject Semester: FILL HERE	Name of	the Subject	ct	COUR	Semeste	r:	FIL	L HERE	
Teaching Scheme: Examination scheme	Teaching	g Scheme	:		Examina	ation scl	neme		
Lectures:3 hours/weekEnd semester exam (ESE):60 marks	Lectures	5:	3 hours	s/week	End sem	nester ex	am (ESE):	6	0 marks
Duration of ESE:03 hours			I		Duratio	n of ESH	E:	0	3 hours
Internal Sessional Exams (ISE): 40 marks					Internal	Session	al Exams (ISE): 4	0 marks
Unit–I: No. of Lectures: 08 Hours Marks: 12		Unit–I	:	No. of Le	ctures: 08 Ho	ours	Μ	Iarks: 12	

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page 44 of 69

		(1)	Antenna	and Wave	Propaga	tion			
(Professional Elective Course – V)									
COURSE OUTLINE									
Titler	Antenna	a and wave i	ropagation		SHOLL	AWP	Course	2	
Title:	locorintio				Thue:		Code:		
The shi	aescriptio	n:	ia to marrido	on in dor	ath under	estandina a	f moda		
	ective of	this course	is to provide	an m-uer	onnlighti	standing 0		ill ovploin	
the theo	, and p	forent types	of optoppos	various a	applicati	otion system	course w		
Lecture	iy or un	Terent types	of antennas	useu ili ee	Jiiiiuiiic	ation syste	1115		
Lecture		Hours/wee	k No of	weeks	Total l	nurs	Semest	er credits	
Lecture		03	13	WEEKS	100011	iours	Bennes		
Duonogu	icito com		and Digital Co	mmiaat	+2				
Prerequ	isite cour	se(s): Advan			.10 n	1 . 1	1		
I ne cou	rse requir	es knowledge	about fundam	ental anteni	na theory	and advan	cea	-11	
electrom	agnetic ne	eld theory. In	e following ex	perience is	userui: u	inderstating	vector c	alculus,	
some kno		of Maxwell s	equations, elec	trical engin	eering pi	incipies.			
	Jujecuves); 	f Antonno and	Warra Duan					
1.10 stu	dy the bas	sics concept o	Antenna and	wave Prop	aganon.				
2.1000	derstand i	ine principie a	Ind radiation p	allern of Ar	itenna.				
J. 10 Ial	linarize u	ie concept of	Huygens Print	of Smorter	nter Princ	cipie.			
4. Provid	the strong I	down tran do in	Antenno and V	y of Siliariai	mennas.	different m	odos of "	adia	
5.10 Lea			Antenna and v	wave Propa	igationa	different m	lodes of f	adio	
Course		n current prac	tice.						
A ftor su	vooraful or	• molation of t	his course the	student will	l ba abla	to:			
1 Descri	be the has	sic concepts a	nd application	s of Antenn	asystem	<u>10.</u>			
$2 \Delta nalv$	ze test an	d use various	types of radiat	ion nattern	of anten	na			
2. Anary 3 Descri	be the co	a use various	gens Principle	&Rahinet F	Of anton Principle	na.			
J.Desen	the conce	nt for massur	gens i interpre		reof Ant	onnos			
4.Apply	une conce	pt 101 measure	a in different n	us paramete		cillias.	nort Ante		
5. 10 des	scribe the	modern trend	s in different n	nodes of rac	no propo	gation & Sr	nart Ante	nnas	
benefits	used in cu	frent practice	•						
			COURS	E CONTEN	NT				
S	atellite C	ommunicatio	on	Semeste	er:	VII	I		
Teachin	g Scheme	:	-	Examin	ation sc	heme			
Lectures	s: 03	3 hour	s/week	End sen	nester ex	(ESE):		60 marks	
				Duratio	on of ESI	E:		03 hours	
Internal Sessional Exams (ISE): 40 marks									
Unit–I: No. of Lectures: 09 Hours Marks: 12									
Antenna	Funda	mental Con	cepts-Definitio	ons – Rad	liation i	ntensity –	Directiv	ve gain –	
Directivi	ty – Powe	er gain – Bea	m width – Bar	nd width – 0	Gain and	radiation r	esistance	of current	
element	element – Half-wave dipole and folded dipole – Reciprocity principle – Effective length and								
effective	effective area, Relation between gain, effective length and radiation resistance. Physical concept								

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **46** of **69**

of radiation, Radiation pattern, near- and far-field regions, effective aperture, polarization, input impedance, efficiency, Friis transmission equation, radiation integrals and auxiliary potential functions. Unit–II: No. of Lectures: 09 Hours Marks: 12 Antenna Arrays, Radiation from Wires and Loops-Antenna array concept, Analysis of uniformly spaced arrays with uniform and non-uniform excitation amplitudes, extension to planar arrays. Infinitesimal dipole, finite-length dipole, linear elements near conductors, dipoles for mobile communication, small circular loop. Unit–III: No. of Lectures: 08 Hours Marks: 12 Aperture Antennas-Huygens' principle, radiation from rectangular and circular apertures, design considerations, Babinet's principle, Radiation from sectoral and pyramidal horns, design concepts. Broadband Antennas: Broadband concept, Log-periodic antennas, frequency independent antennas. Unit–IV: No. of Lectures: 08 Hours Marks: 12 Microstrip Antennas-Concept, Advantages and disadvantages, Basic characteristics of microstrip antennas, feeding methods, methods of analysis, design of rectangular and circular patch antennas. Unit–V: No. of Lectures: 08 Hours Marks: 12 **Wave Propagation** -The three basic types of propagation: Ground wave, space wave and sky wave propagation. Sky Wave Propagation: Structure of the ionosphere - Effective dielectric constant of ionized region - Mechanism of refraction - Refractive index - Critical frequency - Skip distance -Effect of earth's magnetic field - Energy loss in the ionosphere due to collisions - Maximum usable frequency - Fading and diversity reception. Space Wave Propagation: Reflection from ground for vertically and horizontally polarized waves - Reflection characteristics of earth - Resultant of direct and reflectedray at the receiver - Duct propagation. Ground Wave Propagation: Attenuation characteristics for ground wave propagation -Calculation of field strength at a distance. **Text Books:** 1. C. A. Balanis, "Antenna Theory and Design", 3rd Ed., John Wiley & Sons., 2005. 2. Antennas And Wave Propagation by: K.D.PRASAD **Reference Books:** 1. Harish A. R., Antenna and wave propagation, Oxford University Press. Tri T. Ha, "Digital Satellite Communications", Tata McGraw-Hill, 2009 2. J.D.Kraus,"Antennas,McGraw-Hill,1988

	Embedded System (Professional Elective Course VI)								
	(1 Tolessional Elective Course - VI)								
~									
Course	Embedd	led System				Short	ES	Cours	e
Title:						Title:		Code:	
Course	lescriptio	n:	1 1 1	1	1 • 11 •	1 11 1		1 .	
To provi	de student	ts with basic	knowledg	e and s	kills in er	nbedded	system	is design.	
Lecture		Hours/wee	k N	o. of w	eeks	Total l	nours	Semes	ter credits
		3	14	4		42		3	
Prerequ	isite cour	se(s).							
Digital S	vstem De	sign Microco	ontrollers						
Course	biectives		ondoneis						
1. To un	derstand a	dvance trend	s in embe	dded s	vstem				
2. To acc	maint stud	lents with kn	owledge o	of embe	edded pro	cessor. i	ts hardy	vare and sof	tware.
3. To pro	vide skill	s in embedde	d C progr	ammin	g and inte	erfacing	with Er	nbedded pro	cessor.
4. To un	derstand r	eal time oper	ating syste	ems. in	ter-task c	ommuni	cation a	and embedde	d software
developr	nent tools		8.,						
5. Learn	the intern	et operated sy	ystem and	marke	t new trer	nds and t	echnolo	ogy.	
		· · ·							
Course	outcomes	:							
After suc	cessful co	ompletion of	this cours	e the st	udent wil	l be able	to:		
1. Distin	guish real	-time embedo	led systen	ns fron	n other sys	stems.			
2. Under	stand the	ARM process	sor fundar	nentals	5.				
3. Design	n Real Wo	orld Interfacir	ng with Al	RM7 B	ased Mic	rocontro	ller		
4. Evalua	ate the nee	ed for real-tin	ne operati	ng syst	em and re	al-time	algorith	m for task s	cheduling.
5. Under	stand the	IoT and its ap	oplication	design	•				
			CO	URSE	CONTE	NT			
Embedd	ed Syster	n			Semeste	er:		VIII	
Teachin	g Scheme	•			Examin	ation sc	heme		
Lectures	5:	3 hour	s/week		End sen	nester ex	xam (E	SE):	60 marks
					Duratio	n of ES	E:		03 hours
					Internal	Sessior	al Exa	ms (ISE):	40 marks
Unit–I:			No. of	Lectur	res: 08 H	ours		Marks: 1	2
Embedd	ed Syster	n Introducti	on						
Definitio	Definition, Embedded Systems Vs General Computing Systems, Classification, categories,								
Characte	ristics, Re	ecent Trends	, quality a	ttribute	es (Design	Metric)	,embed	ded product	
developr	nent life c	ycle (EDLC)	, commun	nicatior	n protocol	s like CA	AN, blu	etooth and Z	lig-bee.
TL-24 TT			NT P	T - 4		T		M. 1 4	10
Unit-II:			No. of	Lectu	res: U8 H	ours		Marks:	12
AKM PI	ocessors		1 • .	•			0 4 77 1	(11 C.)	. 1
Introduc	Introduction to ARM processors and its versions, ARM7, ARM9 & ARM11 features, advantages								

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **48** of **69**

& suitability in embedded appl	ication. Introduction to Tiva TM4	C123G Series Overview,
A DM7 · registers CDSD SDS	ELIBRARY	onby APM7 data flow model
ARM : legisles, CFSR, SFS	operations	opity, ARM7 data now model,
ARM7 Based Microcontrolle	r LPC2148: Features. Architectur	e (Block Diagram and Its
Description), System Control	Block (PLL and VPB divider), N	Memory Map, GPIO, timer,
Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Real World Interfacing with	ARM7 Based Microcontroller	
Programming in assembly la	anguage/ Embedded C, Interfac	cing with LED, LCD, GLCD,
KEYPAD, stepper / dc motor	, simple LPC2148 GPIO Program	nming examples Using timers of
LPC2148 to generate delay, Int	terrupt structure of LPC2148, prog	gramming for UART
on-chip devices ADC, DAC,W	DT,USB,PWM.	
Unit_IV•	No. of Lectures: 09 Hours	Marks: 12
Real Time Operating System	Concent	
Types of OS. Tasks, process, T	Threads. Multiprocessing and .Mul	ltitasking. Task scheduling.
Threads, Process, Scheduling	Task communications. Task svnc	hronization, how to choose
RTOS, Overview of operating	system (off-the-shelf, Embedded,	RTOS, Handheld), Introduction
to JAVA Programming for Em	bedded System	
Introduction to Ucos II RTOS a	and it's features, study of kernel s	tructure of Ucos II.
Case study of digital camera an	d automatic chocolate vending m	achine (without codes)
	1	
Unit–V	No. of Lectures: 09 Hours	Marks: 12
Unit–V Internet of Things(IoT)	No. of Lectures: 09 Hours	Marks: 12
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols Sen	No. of Lectures: 09 Hours g, Actuation, Basics of Networks Machine-to-Machi	Marks: 12 orking, Basics of Networking,
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi	Marks: 12 orking, Basics of Networking, ne Communications,
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progra	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino.
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Program Introduction to Python program	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an mming, Introduction to Raspberry	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Program Introduction to Python program with Raspberry Pi, Introduction	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an ming, Introduction to Raspberry to SDN, SDN for IoT.	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Program Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an aming, Introduction to Raspberry to SDN, SDN for IoT.	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progra Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring.	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an uming, Introduction to Raspberry to SDN, SDN for IoT. Smart Homes, Smart Grid, Agricul	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progran Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring.	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an aming, Introduction to Raspberry a to SDN, SDN for IoT.	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progra Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books:	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an nming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progran Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an uming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008.	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an aming, Introduction to Raspberry to SDN, SDN for IoT. Smart Homes, Smart Grid, Agricul al , TMH, 2008.	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progra Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an ming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. D Embedded Systems", Tata Mcgr stems , Wiley India, 2002	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progran Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy 4. Jean J Labrose - MicroC / O	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an iming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. D Embedded Systems", Tata Mcgr stems , Wiley India, 2002 S-II, Indian Low Price Edition 20	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progran with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy 4. Jean J Labrose - MicroC / O 5. DR.K.V.K.K. Prasad - Embed	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an nming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. D Embedded Systems", Tata Mcgr stems , Wiley India, 2002 S-II, Indian Low Price Edition 20 edded / real time system, Dreamte	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT lture, Healthcare, Activity caw Hill, 2009.
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progra Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy 4. Jean J Labrose - MicroC / O 5. DR.K.V.K.K. Prasad - Embed 6. Iyer, Gupta - Embedded real 7. Embedded Microcomputer S	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an ming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. Dembedded Systems", Tata Mcgr stems , Wiley India, 2002 S-II, Indian Low Price Edition 20 edded / real time system, Dreamte systems Programming , TMH	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT Iture, Healthcare, Activity raw Hill, 2009.
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progran Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy 4. Jean J Labrose - MicroC / O 5. DR.K.V.K.K. Prasad - Embed 6. Iyer, Gupta - Embedded real 7. Embedded Microcomputer S Cengage Learning: Third or lat	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an aming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. D Embedded Systems", Tata Mcgr stems , Wiley India, 2002 S-II, Indian Low Price Edition 20 edded / real time system, Dreamte systems Programming , TMH Systems – Real Time Interfacing – er edition	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT Iture, Healthcare, Activity Traw Hill, 2009. 02 ch Jonathan W. Valvano;
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Progra Introduction to Python program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy 4. Jean J Labrose - MicroC / O. 5. DR.K.V.K.K. Prasad - Embed 6. Iyer, Gupta - Embedded real 7. Embedded Microcomputer S Cengage Learning; Third or lat 8. "The Internet of Things: Fna	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an ming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. D Embedded Systems", Tata Mcgr stems , Wiley India, 2002 S-II, Indian Low Price Edition 20 edded / real time system, Dreamte systems Programming , TMH bystems – Real Time Interfacing – er edition.	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT Iture, Healthcare, Activity raw Hill, 2009. 02 ch Jonathan W. Valvano; nd Use Cases", by Pethuru
Unit–V Internet of Things(IoT) Introduction to IoT, Sensing Communication Protocols, Sen Interoperability in IoT, Introduction to Arduino Program with Raspberry Pi, Introduction Case Study: Smart Cities and S Monitoring. Text Books: 1. Embedded Systems, Rajkam 2. Shibu. K. V, "Introduction to 3. Frank Vahid - Embedded Sy 4. Jean J Labrose - MicroC / O. 5. DR.K.V.K.K. Prasad - Embed 6. Iyer, Gupta - Embedded real 7. Embedded Microcomputer S Cengage Learning; Third or lat 8. "The Internet of Things: Ena Raj and Anupama C. Raman (C	No. of Lectures: 09 Hours g, Actuation, Basics of Netwo sor Networks, Machine-to-Machi mming, Integration of Sensors an aming, Introduction to Raspberry to SDN, SDN for IoT. mart Homes, Smart Grid, Agricul al , TMH, 2008. D Embedded Systems", Tata Mcgr stems , Wiley India, 2002 S-II, Indian Low Price Edition 20 edded / real time system, Dreamte systems Programming , TMH bystems – Real Time Interfacing – er edition. bling Technologies, Platforms, ar CRC Press)	Marks: 12 orking, Basics of Networking, ne Communications, d Actuators with Arduino. Pi, Implementation of IoT Iture, Healthcare, Activity raw Hill, 2009. 02 ch Jonathan W. Valvano; nd Use Cases", by Pethuru

9. "Internet of Things: A Hands-on Approach", by Arshdeep Bahga and Vijay Madisetti (Universities Press).

Reference Books:

- 1. Embedded systems software primer, David Simon Pearson
- 2. ARM System Developers Guide- Sloss, Symes, Wright, ElsevierMorgan Kaufman, 2005
- 3. ARM System-on-Chip Architecture, Steve Furber Pearson 2005
- 4. LPC 214x User manual (UM10139) :- www.nxp.com
- 5. ARM architecture reference manual : www.arm.com
- 6. Trevor Martin, An Engineer's Introduction to the LPC2100 series, Hitex (UK)
- 7. Joseph Yiu, —The Definitive Guide to the ARM Cortex-Ml, Newness, ELSEVIER.
- 8. http://www.ti.com/

	Mobile Communication Network (Professional Elective Course – VI)							
COURSE OUTLINE								
Course	Mobile C	obile Communication Network			Short	MCN	Course	e
Title: Code:								
Course d	lescription	1:						
This cou	This course describes the fundamentals of telecommunication switching and their traffic. This							
course wi	ill help to i	understand the co	ncept of mol	oile manag	gement a	nd coding	in GSM &	<u>¢ CDMA.</u>
	bile	Hours/week	No. of we	eeks	Total	iours	Semest	ter credits
Commu	inication	3	14		42		3	
Net	work							
Prerequi	site cours	e(s):	. 1.	1.1.				
Knowl	edge of ba	asic Computer N	etworking a	ind their c	oncept.			
Course o	bjectives:							
	0							
1. To lear	rn and und	erstand the basic	principles of	Telecom	nunicati	on switchi	ng, traffic	and
networks							0	
2 To lear	rn and und	erstand basic cond	cepts of cellu	ular systen	n, wirele	ess propaga	ation and t	he
technique	es used to i	maximize the capa	acity of cellu	ılar netwo	rk.			
3To lear	n and unde	erstand architectur	re of GSM a	nd CDMA	system			
4 To und	lerstand m	obile managemen	t, voice sign	al process	ing and	coding in (GSM and	CDMA
system								
Course o	utcomes:							
After suc	cessful con	mpletion of this co	ourse the stu	dent will b	be able t	o:		
After suc	cessfully c	completing the con	urse students	s will be al	ble to			
1 Explain	and apply	the concepts tele	ecommunicat	tion switch	hing, tra	ffic and ne	tworks	
2 Analyz	e the teleco	ommunication tra	ffic.					
3 Analyz	e radio cha	annel and cellular	capacity.					
4 Explai	n and appl	y concepts of GS	M and CDM	A system				
			~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	~~~~~				
			COURSE	CONTEN	NT .			
Mobile (	Communic	cation Network		Semeste	r:			
Teaching	g Scheme:			Examina	ation sc	heme		
Lectures	:	3 hours/we	eek	End sem	iester ex	kam (ESE)	):	60 marks
				Duration	n of ESI	E:		03 hours
Internal Sessional Exams (ISE): 40 marks								
Unit–I:		No.	of Lectures	: 09Hours	s	Marks: 12	2	
Telecom	municatio	n Switching & T	raffic					
Telecom	municatior	switching: Mess	age switchin	g, Circuit	switchin	ng, Manual	System, I	Electronic
Switching. Digital switching: Switching functions, Telecommunication Traffic: Unit of Traffic,								
Traffic measurement, A mathematical model, Lost- call systems: Theory, traffic performance, loss								

systems in tandem, traffic tables. Queuing systems: Erlang Distribution, probability of delay, Finite queue capacity, Systems with a single server, Queues in tandem, delay tables and application of Delay formulae

Unit–II:No. of Lectures: 09 HoursMarks: 12Switching Networksand SignalingSingle Stage Networks, Gradings, Link Systems, Grades of service of link systems. Time DivisionSwitching: Space and time switching, Time division switching networks, Synchronization, Callprocessing Functions, Common Control, Reliability, Availability and Security. Signaling:Customer line signaling. FDM carrier systems, PCM signaling, Inter-register signaling, Commonchannel signaling principles, CCITT signaling No. 6, CCITT signaling No. 7, Digital customer linesignalingUnit–III:No. of Lectures: 08 HoursMarks: 12Cellular ConceptsEvolution of Wireless systems, Introduction to cellular telephone system, Frequency reuse,

Channel Assignment, Handoff strategies, Cell Splitting, Propagation Mechanism: Free space loss, Reflection, Diffraction, Scattering. Fading and Multipath: Small scale multipath propagation, Impulse response model of multipath channel. Multiple Access Techniques-TDMA, FDMA, CDMA

# Unit–IV: No. of Lectures: 08 Hours Marks: 12

First and Second Generation Mobile Systems

First Generation Cellular Systems, AMPS, GSM Cellular Telephony: Introduction, Basic GSM Architecture, Basic radio transmission parameters in GSM system, Logical Channels, GSM time hierarchy, GSM burst structure, Description of call setup procedure, Handover, Modifications and derivatives of GSM.

Unit–V: No. of Lectures: 08 Hours Marks: 12 GSM Services , GSM Physical layer

Speech Coding and decoding, GMSK modulation, Data transmission in GSM: Data Services, SMS, HSCSD, GPRS, EDGE. CDMA Based Mobile Systems Motivation for CDMA use, Spreading Sequences, Basic Transmitter and Receiver schemes, IS-95 system: Frequency Range, Downlink transmission, Uplink transmission, Power control, Introduction to 3G mobile systems: W-CDMA and cdma-2000

### Text Books:

1. J. E. Flood , "Telecommunications Switching, Traffic and Networks", Pearson Education 2. Krzysztof Wesolowski, "Mobile Communication Systems", Wiley Student Edition

### **Reference Books:**

- 1. Theodore S Rappaport, "Wireless Communications Principles and Practice" Second Edition, Pearson Education
- 2. John C. Bellamy, "Digital Telephony", Third Edition; Wiley Publications
- 3. ThiagarajanVishwanathan, "Telecommunication Switching Systems and Networks"; PHI Publications
- 4. Wayne Tomasi, "Electronic Communications Systems"; 5th Edition; Pearson Education .

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **52** of **69** 

	High Speed Electronics (Professional Elective Course – VI)									
Course	Course High Speed Fleetronics Short USE Course									
Course Title	High Sp	eed Electronics			Snort Title	HSE	Code	2		
Course of	Course description:									
The cour	se aims to	o give exposure on	the band di	agram, c	haracteri	stics of				
hetero-ju	nction de	vices and fabrication	on techniqu	les.						
Lecture		Hours/week	No. of w	eeks	Total l	nours	Semest	er credits		
		3	14		42		3			
Prerequ	isite cour	se(s):			I					
BEEE, S	emicondu	ictor Devices								
Course	objectives	5:								
As semic	conductor	device geometry n	niniaturizes	, the devi	ice becor	nes faste	r and some	devices		
move int	o the quar	ntum-effect region.	These high	her-speed	l devices	are the k	key compone	ents for		
future ele	ectronic s	ystems in communi	ications, co	mputers,	control,	and cons	sumer applic	ations.		
1. Impor	tant paran	neters governing th	e high spee	ed perform	mance of	devices	and circuits.			
2. To une	derstand r	naterial properties.								
3. To lea	rn MOS d	liode, MOSFET, st	ructure and	l operatio	ons.					
4. To lea	rn Metal s	semiconductor con	tacts and M	letal Insu	lator Ser	niconduc	ctor and MO	S devices.		
5. To lea	rn High E	Electron Mobility T	ransistors.							
Course	outcomes	:								
After suc	cessful co	ompletion of this co	ourse the st	udent wi	ll be able	e to:				
1. Knov	vledge of	materials and basic	c issues (co	mpound	semicon	ductor) u	sed in high s	speed		
devic	es and the	eir								
2. Prop	erties rela	ted to the high spee	ed and devi	ces						
3. Knov	vledge of	the advanced techr	iologies, de	evices op	eration a	long with	h their descri	iptive		
mode	els for hig	h speed electron de	evices	1 / 1	1		1 . 1 .	. 11		
4. Basic	c knowled	lge of the operation	of selected	1 optoeled	ctronic d	evices an	id to exploit	t small-		
signa	equivale	ent circuit models o	of high freq	uency ele	ectron de	vices				
(ME)	SFEIS, H	cit physics based r	nothomotio	al modal	for the	onolucio	and the deci	on of high		
J. Aum	iy io expi	tron devices (MES			$\Gamma_{\rm c}$	allalysis	and the desig	gii oi iligii		
nequ	ency elec	tion devices (IVIES			15) NT					
High Sn	eed Flect	ronics	COURSE	Semesta	1 <b>11</b> 2 <b>r</b> •	,	VIII			
Teachin	a Sohomo			Evomin	ation as	hama	V 111			
Lecture	g Scheine	3 hours/wee	k	Examin End ser	nester ev	neme sam (ES	E):	60 marke		
	-			Duratio	on of ESI	E:		03 hours		
				Interna	l Sessior	nal Exan	ns (ISE):	40 marks		
Unit–I:	Unit-I:     No. of Lectures: 08 Hours     Marks: 12									
Important parameters governing the high speed performance of devices and circuits:										

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **53** of **69** 

Transit time of charge carriers, junction capacitances, ON-resistances and their dependence on the device geometry and size, carrier mobility, doping concentration and temperature; important parameters governing the high power performance of devices and circuits: Break down voltage, resistances, device geometries, doping concentration and temperature

Unit–II:	No. of Lectures: 08 Hours	Marks: 12			
Materials properties: Merits of	III -V binary and ternary compound	and semiconductors (GaAs, InP,			
InGaAs, AlGaAs, SiC, GaN etc	c.), different SiC structures, silico	n germanium alloys and silicon			
carbide for high speed devices,	as compared to silicon based dev	ices, outline of the crystal			
structure, dopants and electrical	l properties such as carrier mobili	ty, velocity versus electric field			
characteristics of these material	ls, electric				
field characteristics of materials	s and device processing technique	es, Band diagrams, homo and			
hetro junctions, electrostatic cal	lculations, Band gap engineering,	doping, Material and device			
process technique with these III	I-V and IV – IV semiconductors.				
Unit–III:	No. of Lectures: 08 Hours	Marks: 12			
MOS Diode: Structure - band d	liagram - operation - C–V charact	eristics - effects of oxide			
charges - avalanche injection -	high field effects and breakdown;	Heterojunction Based			
MOSFET: Band diagram - strue	cture - operation - I-V and C-V c	characteristics (analytical			
expressions) - MOSFET breakd	lown and punch through - subthre	eshold current - scaling			
down; Alternate High k-dielect	ric Materials: HF-MOSFETs - SO	OI MOSFET - buried channel			
MOSFET - charge coupled dev	ices.				
Unit–IV:	No. of Lectures: 09 Hours	Marks: 12			
Metal semiconductor contacts	and Metal Insulator Semicondu	actor and MOS devices: Native			
oxides of Compound semicone	ductors for MOS devices and th	ne interface state density related			
issues. Metal semiconductor co	ontacts, Schottky barrier diode, M	Aetal semiconductor Field Effect			
Transistors (MESFETs): Pin-	ch off voltage and threshold	voltage of MESFETs. D.C.			
characteristics and analysis of	of drain current. Velocity ove	rshoot effects and the related			
advantages of GaAs, InP and	I GaN based devices for high	speed operation. Sub threshold			
characteristics, short channel ef	fects and the performance of scal	ed down devices.			
Unit–V	No. of Lectures: 09 Hours	Marks: 12			
High Electron Mobility Transi	stors (HEMT): Hetero-junction a	levices. The generic Modulation			
Doped FET(MODFET) structu	are for high electron mobility re	alization. Principle of operation			
and the unique features of HEMT, InGaAs/InP HEMT structures: Hetero junction Bipolar					
transistors (HBTs): Principle of operation and the benefits of hetero junction BJT for high speed					
applications. GaAs and InP based HBT device structure and the surface passivation for stable					
high gain high frequency performance. SiGe HBTs and the concept of strained layer devices;					
High Frequency resonant - tuni	neling devices, Resonant-tunnelin	ig hot electron transistors			
Text Books:					
1 C.V. Chang, F. Kai, Galas High Speed Davies: Dhysics, Tachnology and Circuit Applications					

1. C.Y. Chang, F. Kai, GaAs High-Speed Devices: Physics, Technology and Circuit Applications Wiley

2. Cheng T. Wang, Ed., Introduction to Semiconductor Technology: GaAs and Related

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **54** of **69** 

Compounds,

John Wiley & Sons

3. David K. Ferry, Ed., Gallium Arsenide Technology, Howard W. Sams & Co., 1985

4. Avishay Katz, Indium Phosphide and Related materials: Processing, Technology and Devices, Artech

House, 1992.

5. S.M. Sze, High Speed Semiconductor Devices, Wiley (1990) ISBN 0-471-62307-5

# **Reference Books:**

 Ralph E. Williams, Modern GaAs Processing Methods, Artech (1990), ISBN 0-89006-343-5
 Sandip Tiwari, Compound Semiconductor Device Physics, Academic Press (1991), ISBN 0-12-691740-X
 G.A. Armstrong, C.K. Maiti, TCAD for Si, SiGe and GaAs Integrated Circuits, The Institution of Engineering and Technology, London, United Kingdom, 2007, ISBN 978-0-86341-743-6.
 Ruediger Quay, Gallium Nitride Electronics, Springer 2008, ISBN 978-3-540-71890-1, (Available on

NITC intranet in Springer eBook section)

5. Prof. Dr. Alessandro Birolini, Reliability Engineering Theory and PracticeSpringer 2007, ISBN-10 3-

540- 40287-X, Available on NITC intranet in Springer eBook section)

		Automot	ive Electroni Open Electiv	cs and Ele	ectric V	ehicle		
	COUDSE OUTLINE							
Course Automotive Electronics and Electric Vehicle Short AFEV Course								
Title:	1100000			, , chiele	Title:		Code:	
Course description:								
The ob	jective of	this course	is to prov	ide an i	in- deptl	n understan	ding of	modern
Automo	, tive Elect	ronics & Electr	ic vehicle co	ncepts,	and var	rious types	of sensor	rs used in
automob	automobile vehicles.							
Lecture		Hours/week	No. of w	veeks	Total h	ours	Semeste	er credits
		03	13		42			
Prerequ	isite cour	se(s):Instrument	ation, Microp	rocessor &	& Micro	controller ar	nd Digital	Signal
Processi	ng.		, I				C	C
The cou	rse require	es knowledge ab	out fundamer	tal of mot	tors, sens	sors,controll	lers, signa	ıl
processo	rs and ele	ctric vehicles con	ntaining 2 stro	oke & 4 st	roke eng	jine.		
Course	objectives	•						
1. To stu	dy the bas	sics concept of se	ensors& actua	tors.				
2. To un	derstand tl	ne principle of va	arious motors	& signal	processo	ors.		
3. To far	niliarize th	ne concept of Ha	ll Effect Sens	ors & con	nbustion	engine.		
4. Provid	le strong f	oundation for ur	derstanding of	of Smartel	ectric ve	hicles.		
5.To Lea	rn the mo	dern trends inhy	brid engine v	ehicles &	electron	ically contro	olled auto	motives.
Course	outcomes							
After suc	ccessful co	mpletion of this	course the st	udent will	be able	to:		
I Descri	be the bas	sic concepts and	applications of	of variouss	sensors.			
2. Analy 3 Descri	ze, test an	d use various typ ncept of CI & P	bes of test ben lengines	iches for e	electric v	ehicles.		
$\int \Delta n n l v$	the concer	nt for measurem	ent of various	naramete	rsof veh	icles		
5 To de	cribe the	modern trends in	different sm	art electro	nically c	controlled by	whrid web	
J. 10 uc.								
			COURSE	CONTEN	JT			
Automo	tive Elect	ronics and Elec	tric Vehicle	Semeste	r	VII	T	
Toochin	a Schomo			Evomin	ation cel	homo		
I catim	g Scheme	·	vool	Examina End corr	auton sci	om (FSF).		60 marka
Lecture	5: 03	5 Hour 5/ W	/ EEK	Dura 4				00 marks
				Duratio	n ol ESI			
	Internal Sessional Exams (ISE): 40 marks							
Unit–I:			No. of Lectu	res: 09 Ho	ours	Μ	larks: 12	
Use of Electronics In The Automobile -Concept of A System, Control Theory: Open Loop								
Control & Close loop control, Instrumentation, Signal Processing & Filtering, Electronics								
Fundamentals, Instrumentation application of Microcomputer								
Unit–II:	• • •		No. of Lectu	res: 09 Ho	ours	M	larks: 12	
Electron	nc Engin	e Control -M	otivation For	r Electror	nic Eng	ine Control	l, Conce	pt of An
Analysis	of Intaka	Control System, Manifold Press	Engine Perfo	ormance T	erms, E Electroni	lectronic Fu	iel Contro	oi System,
Analysis of Intake Manifold Pressure, Idle speed control, Electronic Ignition								

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **56** of **69** 

Unit–III:	No. of Lectures: 08 Hours	Marks: 12					
Sensors and Actuators -Auto	Sensors and Actuators - Automotive Control System Applications of Sensors And Actuators,						
Throttle Angle Sensor, Tempe	rature Sensors, Sensors For Fee	edback Control: Knock Sensor,					
Automotive Engine Control	Actuators, Electric Motor Actu	ator, Ignition System & Coil					
operation							
Unit–IV:	No. of Lectures: 08 Hours	Marks: 12					
Hybrid Electric Vehicles -In	troduction to Hybrid Electric V	ehicles: History of hybrid and					
electric vehicles, social and env	vironmental importance of hybrid	and electric vehicles, impact of					
modern drive-trains on energy s	upplies.	-					
Hybrid Electric Drive-trains: E	Basic concept of hybrid traction,	introduction to various hybrid					
drive-train topologies, power	flow control in hybrid drive-tr	ain topologies, fuel efficiency					
analysis.							
Unit–V:	No. of Lectures: 08 Hours	Marks: 12					
Energy Storage - Introduction	to Energy Storage Requirements	in Hybrid and Electric Vehicles,					
Battery based energy storage a	nd its analysis, Fuel Cell based	energy storage and its analysis,					
Super Capacitor based energy	storage and its analysis, Flywhe	el based energy storage and its					
analysis, Hybridization of diffe	erent energy storage devices. Siz	ing the drive system: Matching					
the electric machine and the inte	ernal combustion engine (ICE).						
Text Books:							
1. William B. Ribbens – Unders	standing Automotive Electronics-	An Engineering Perspective,					
Butterworth-Heinemann, An im	print Elsevier, First Indian reprint	t 2014, ISBN 978-93-5107-					
1518							
2. Al Santini- Automotive Tech	nology, Cengage Learning, India	Edition, 2011, ISBN 978-81-					
3151412-2.							
3. C. Mi, M. A. Masrur and D.	W. Gao, "Hybrid Electric Vehicle	s: Principles and Applications					
with Practical Perspectives", Jol	hn Wiley & Sons, 2011.						
Reference Books:							
1. K. K. Ramalingam- Automo	bile Engineering, Scitek Publicat	ion, Second Edition.					
J.D.Kraus,"Antennas, McGr	raw-Hill,1988.						
2. S. Onori, L. Serrao and G. R	Rizzoni, "Hybrid Electric Vehicles	: Energy Management					
Strategies". Springer. 2015.							
3. M. Ehsani, Y. Gao, S. E. Ga	y and A. Emadi, "Modern Electri	c, Hybrid Electric, and Fuel					
Cell Vehicles: Fundamental	s, Theory, and Design", CRC Pres	ss, 2004.					
4. T. Denton, "Electric and Hy	brid Vehicles", Routledge, 2016.						

			(On	Cyber :	Security e Course	- <b>IV</b> )			
(Open Elective Course – IV)									
COURSE OUTLINE									
Course Cyber Security Short CS Course						9			
Title:	v	v				Title:		Code:	
Course of	lescriptio	n:							
Cyber Se	ecurity cou	urse focuses	on cybe	er threats a	and cyber	security	that prov	ides the m	uch needed
awarenes	ss in the ti	mes of grow	ing cyb	ercrime ep	pisodes.				
Lecture		Hours/wee	ek	No. of w	veeks	Total ł	ours	Semest	ter credits
		3		1	4		42		3
Prerequ	isite cour	se(s):							
Compute	er Networl	ĸ							
Course of	objectives	:							
1. To u	nderstand	Cybercrime	and Cy	beroffense	es.				
2. To u	nderstand	Cybercrime	through	n portable	devices.				
3. To u	nderstand	tools and me	ethods u	used in Cy	bercrime.				
4. To u	nderstand	Phishing and	l Identi	ty theft.					
5. To u	nderstand	Computer F	orensic	s.					
Course of	outcomes	•							
After suc	ccessful co	ompletion of	this co	urse the st	udent will	be able	to:		
1. Deter	rmine the	act of Cyber	offense	s.					
2. Deter	rmine the	Cybercrime	through	n portable	devices.				
3. Deter	rmine the	methods use	d in Cy	bercrime.					
4. Deter	rmine Phis	shing and Id	entity th	neft.					
J. Desc	nde Com	puter Forens	ics.						
				OUDSE	CONTEN	T			
Cyber S	ecurity			JUUKSE	Semester	1 r•		VI	II
Tooshin	a Sahama				Evoning	tion col	homeon	V 1	11
Teachin	g Scheme		, ,	1			neme:		(0 1
Lectures	5:	3 hou	rs/weel	X	End Sen	nester E	xam (ES	E):	60 marks
					Duration	n of ESI	£:		03 hours
					Internal	Session	al Exam	( <b>ISE</b> ):	40 marks
	Unit–I	:	No	of Lectu	res: 08 Ho	ours		Marks: 12	2
Introdu	ction to C	Cybercrime:	Introc	luction, C	Cybercrime	e: Defini	tion and	Origins of	the Word,
Cybercrime and Information Security, Who are Cybercriminals?, Classifications of Cybercrimes									
Cyberof	Cyberoffenses: How Criminals Plan Them: Introduction, How Criminals Plan the Attacks								
Social I	Engineerir	ng, Cyberst	alking,	Cybercaf	e and C	ybercrir	nes, Bot	nets: The	Fuel for
Cybercri	me, Attac	k Vector, Cl	oud Co	mputing.					
Unit–II: No. of Lectures: 08 Hours Marks: 1				2					

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **58** of **69** 

**Cybercrime: Mobile and Wireless Devices:** Introduction, Proliferation of Mobile and Wireless Devices, Trends in Mobility, Credit Card Frauds in Mobile and Wireless Computing Era, Security Challenges Posed by Mobile Devices, Registry Settings for Mobile Devices, Authentication Service Security, Attacks on Mobile/Cell Phones, Mobile Devices: Security Implications for Organizations, Organizational Measures for Handling Mobile device related security issues, Organizational Security Policies and Measures in Mobile Computing Era, Laptops

Unit–III:	No. of Lectures: 08 Hours	Marks: 12
Tools and Methods Used in	Cybercrime: Introduction, Pro	xy Servers and Anonymizers,,
Phishing, Password Cracking, F	Keyloggers and Spywares, Virus	and Worms, Trojan Horses and
Backdoors, Steganography, DoS	and DDoS Attacks, SQL Injection	on, Buffer Overflow, Attacks on
Wireless Networks		

Unit–IV:	No. of Lectures: 09 Hours	Marks: 12
Phishing and Identity Theft: In	ntroduction, Phishing, Identity Th	eft (ID Theft)

**Understanding Computer Forensics:** Introduction, Historical Background of Cyberforensics, Digital Forensics Science, The Need for Computer Forensics, Cyberforensics and Digital Evidence, Forensics Analysis of E-Mail

Unit–V:	No. of Lectures: 09 Hours	Marks: 12
Computer Forensics: Digital	Forensics Life Cycle, Chain	of Custody Concept, Network
Forensics, Approaching a C	computer Forensics Investigation	on, Computer Forensics and
Steganography, Relevance of t	he OSI 7 Layer Model to Com	puter Forensics, Forensics and
Social Networking Sites: The	Security/Privacy Threats, Chall	lenges in Computer Forensics,
Special Tools and Techniques, H	Forensics Auditing, Antiforensics	

#### **Text Books:**

1. Nina Godbole and Sunil Belapure, "Cyber Security", Wiley India Publication, 2014

#### **Reference Books:**

- 1. Nina Godbole, Information Systems Security, Wiley India Publication
- 2. V.K. Pachghare, Cryptography and Information security, PHI, Second edition

Robotics										
(Open Elecuve Course – IV)										
COURSE OUTLINE										
Course	Robotic	S			Short	RO	Cou	rse		
Title:					Title:		Code	e:		
Course description:										
In this c	ourse, stu	idents take of	on the roles of	of mechanic	cal engin	neers, c	omputer s	cienti	sts and	
electrical engineers. Students research dynamics, kinematics and sensors. Topics such as										
such as	motion p	matic actuat	obstacle av	oldance, ve	elocity a	and acc	celeration,	seria	i chain	
Lecture	sins, pilee	Hours/wee		f weeks	Total	ı. hours	Sem	ester	credits	
Lecture		3		14	Iotari	42	Jein	3	cicuits	
Drorogu	isita com			17		74		5		
rereyu		50(5).								
Course o	biective	s:								
1. To u	nderstand	structures ar	d classificati	ons in robo	tics					
2. To ga	ain knowl	ledge of type	s of actuators	and sensors	s in robo	otics.				
3. To u	nderstand	and learn rol	botic transfor	mations.						
4. To ki	now diffe	rent analysis	techniques for	or robotic ki	nematic	s and d	ynamics.			
5. To le	arn contr	ol techniques	for robotic p	orogrammin	g.					
Course of	outcomes	:				_				
After suc	cessful c	ompletion of	this course the	ne student w	vill be at	ole to:				
I. Expla	ain struct	ure and class	fication of ro	bots.						
2. Defin	ne role of	actuators, se	nsors and vis	ion system i	in roboti	CS				
3. Desc	ribe varic	bus transform	ations in rob	ots.	1 /					
4. Anal	yze the di	ifferent kinen	hatics and dy	namics in ro	bots.					
5. Appl	y control	techniques fo	or programm	ing in roboti	ics					
			COURS	E CONTE	NT					
Robotics	5		00010	Semester	:		۲	VIII		
Teachin	g Scheme	2:		Examina	tion Scl	neme				
Lectures	5:	3 hour	s/week	End Sem	ester Ex	xam (E	<b>SE):</b>	60 n	narks	
				Duration	of ESE	:		03 h	ours	
Internal Sessional Exam (ISE): 40 ma								narks		
	Unit–I	:	tures: 09 H	lours		Marks:	12			
Introduction to Robotics:										
Robots,	History of	of Robots, F	Robots Usage	e, Basic Str	ructure	of Rob	ots, Clas	sifica	tion of	
Robots by Applications, classification by Coordinate Systems, Classification by Actuation										
System, Classification by Control System, Robot classification by programming method.										

Unit–II:	No. of Lectures: 08 Hours	Marks: 12								
Robot Actuators, Sensors and Vision:										
Robot Actuators: Pneumatic, Hydraulic and Electric										
Robot Sensors: Sensor classification, Internal Sensors, External Sensors, Sensor selection										
Vision System in Robots.										
		1								
Unit–III:	No. of Lectures: 09 Hours	Marks: 12								
Transformations and Statics	in Robotics:									
Robot Architecture, Pose o	of Rigid Body, Coordinate	Transformation, Denavit and								
Hartenberg(DH) Parameters	Provenius Calculations Fou	ivelant Joint Torque Dola of								
Forces and Moment balance,	, Recursive Calculations, Equ	Ivalent Joint Torque, Role of								
Jocobian in Statics.										
Unit-IV:	No. of Lectures: 08 Hours	Marks: 12								
Kinematics and Dynamics										
Forward Position Analysis, In	verse Position Analysis, Veloci	ity Analysis, Inerita Properties,								
Eular- Lagrange Formulation	, Newton – Eular Formulatio	n, Recursive Newton – Eular								
Algorithm										
Unit–V:	No. of Lectures: 08 Hours	Marks: 12								
<b>Robotic Control and Program</b>	Robotic Control and Programming:									
Control Techniques, Second C	Order Linear Systems, Feedbac	k Control and its Performance,								
Non Linear Trajectory Control	l, State Space Representation a	nd Control, Stability, Cartesian								
and Force Controls, Robotic P	rogramming									
Text Books:										
1. Saha, S.K., "Introduction to	b Robotics, 2nd Edition, McGra	w-Hill Higher Education, New								
Deini, 2014.										
Deference Deeler										
1 Niku Saeed R "Introduct"	ion to Robotics: Analysis Syst	tems Applications" PHI New								
Delhi	ion to Robotics. Analysis, Syst	tenis, Applications, 1111, New								
2 Mittal R K and Nagrath I I	2 Mittal P.K. and Nagrath I.L. "Robotics and Control" Tata McGraw Hill									
3 Mukheriee S. "Robotics ar	ad Automation" Khanna Publis	hing House, Delhi								
4. Craig, J.J., "Introduction to	Robotics: Mechanics and Cont	rol". Pearson. New Delhi								
2009.		, <b></b> , - <b> - - - - - - - -</b>								
5. Mark W. Spong, Seth Hutc	hinson, and M. Vidyasagar, "Ro	obot Modelling and Control",								
John Wiley and Sons Inc, 2	2005.									
6. Steve Heath, "Embedded S	ystem Design", 2nd Edition, Ne	ewnes, Burlington, 2003.								

Communication Lab-II												
C	C	• 4		B COURSI	E OUTL			C				
Course	Commu	nicat	ion Lab-II			Short	CL-II	Cours	e			
Title:	1					1 itle:		Code:				
Course	The communication I ab. II is based on Microwaya theory and Technique and Embedded											
The communication Lab –II is based on Microwave theory and Technique and Embedded												
Laborat	orv	Hoi	ırs/week	No. of we	eks	Total l	ours	Semes	ter credits			
			2	14			28		1			
End Sen	nester Exa	am (l	ESE) Pattern:		Practica	al (PR)	_					
Prereau	isite cour	se(s)	, 									
Electrom	agnetic W	/ave	and Microcon	troller								
Course of	biectives	:										
1. To une	derstand A	naly	sis of Wavegui	des and gai	n compl	ete knov	vledge abo	out Microv	wave			
Compon	ents.	5	U	U	1		U					
2. Design	n of Imped	lance	Matching and	Tuning usi	ng lump	ed and d	istributed	elements	for			
network.	1		C	U	0 1							
3. To An	alysis and	stud	y characteristic	cs of microv	wave tub	e Genera	ators and A	Amplifiers	5.			
4. To An	alysis and	stud	y characteristic	es of microv	wave Ser	nicondu	ctor of det	ector, swi	tch,			
generato	r		-									
5. Introd	uce studer	nts to	embedded syst	tems design	tools an	nd hardw	are progra	ammers				
6. Give t	he student	s skil	lls in both simu	ilation and	practical	implem	entation of	f the basic	building			
blocks of	f a ARM i	ncluc	ling timers, cou	unters, PWN	M genera	tion, I/C	) technique	es and req	uirements,			
A/D con	version, se	erial o	communication	IS.								
Course of	outcomes	:										
Upon suc	ccessful co	omple	etion of lab Co	urse, studer	nt will be	e able to:						
1. Under	stand vari	ous p	arameters of w	aveguide a	nd use of	f compo	nent as per	r applicati	ons.			
2. Able t	o design i	mped	lance matching	network fo	or any tra	insmissio	on line or s	system.				
3. Able t	o analyze	and f	ind application	is and limit	ations of	microw	ave tube C	Benerators	and			
Amplifie	ers.	•					~ ·					
4. Able t	o analyze	and f	application	is and limit	ations of	microw	ave Semic	onductor	devices.			
5. Able t	o understa	and ba	asics of embed	ded system.	•							
6. Understand the use of IDE tools												
7. Under	stand the	interf	acing of basic	I/O devices	like LE	D, LCD,	/-Segmen	nt				
8. Able t	o interface	e swit	tcn, stepper mo	otor and imp	plement l	K105 b	enavior.					
LAD COUDSE CONTENT												
Commu	nication I	Lab-I		Sen	Semester: V				ш			
Teachin	g Scheme	•		Exa	minatio							
Practica	l:		2 hours/week	c Enc	d Semes	ter Exai	n (ESE):	(PR)	25 marks			
			1	Inte	ernal Co	ntinuo	IS Assessn	nent	25 marks			
					A):							
L				(-0	11				I			

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **62** of **69** 

(Note: Minimum EIGHT experiments to be performed from Group - A / Group - B) Group - A 1 Plot and study V-I Characteristics of GUNN Diode 2 Plot and study Reflex Klystron Characteristics 3 Measurement of Attenuation (Fixed and Variable) 4 Microwave Junction: Power splitting Characteristics (E / H/ EH plane tee) 5 Measurement of coupling factor, insertion loss, directivity and isolation of Directional coupler 6 Study of Circulators (Y or T Type) and Isolators (measurement of isolation) 7 Measurement of VSWR (using Vmax / Vmin method) 8 Plot radiation pattern of horn antenna. 9 Plot radiation pattern of parabolic antenna. 10 Measurement of unknown impedance using smith chart Group - B 1. Study of IDE (integrated development environment) 2. C-Program to explore timers / counter. 3. C-programs for interrupts. 4. Program to interface LED and switch. 5. Program to interface LCD. 6. Program to interface Keyboard and display key pressed on LCD. 7. Program to interface stepper motor. 8. Writing basic C-programs for I / O operations. 9. Implementation of USB protocol and transferring data to PC. 10. Implementation of algorithm /program for the microcontroller for low power modes. Text Book 1. Samuel Liao, Microwave Devices and Circuits, Pearson Education, 3/e, 2. Annapurna Das, Sisir Das, Microwave Engineering, TMH, 2/e 3. David M. Pozar, Microwave Engineering, Wiley India, 4/e 4. Sisodia, Gupta, Microwaves : Introduction to Circuits, Devices and Antennas, New Age, 1/e. 5. Rajkamal - Embedded Systems, TMH, Second edition 6. Andrew sloss "Arm System Developer guide" 7. Data sheet and User manual of LPC2148. 8. Dr.K.V.K.K. Prasad - Embedded / real time system, Dreamtech. **Reference Books:** 1. Manojit Mitra, Microwave Engineering, Dhanpat Rai, 3/e 2. Robert E Collin, Foundations for Microwave Engineering, Wiley India, 2/e 3. Simon Ramo, Fields and Waves in Communication Electronics, Wiley India, 3/e 4. K K Sharma, Fundamentals of Microwave and Radar Engineering, S Chand. 1/e

- 5. Steve Furber ARM System-on-Chip Architecture, Pearson
- 6. Jean J Labrose MicroC / OS-II, Indian Low Price Edition

### **Guide lines for ICA:**

Students must submit ICA in the form of journal. Each assignment should be well documented. Faculty in charge will assess the assignments continuously and grade or mark each assignment on completion date declared for each assignments.

### **Guidelines for ESE:**

ESE will be based on the Laboratory assignments submitted by the students in the form of journal. In the ESE (PR), the students may be asked to perform the practical assignment with minor modification.

Evaluation will be based on the paper work of algorithm, understanding of the logic and the syntax, quality of the program, execution of the program, type of input and output for the program.

Computer Network Lab										
Course	Comput	er Ne	twork Lah		JKSE UUIL	Short CNL		Cours	ρ	
Title:	comput					Title:	CIUL	Code:		
Course	lescriptio	n:								
Laborat	Laboratory Hours/week No.					Total hours		Semes	ter credits	
			2		14		28		1	
End Sen	End Semester Exam (ESE) Pattern:Practical (PR)									
Prerequ	isite cour	se(s):								
Compute	r Fundam	ental	and Basics of	Analog	g and Digital	Commu	nication			
Course	objectives	:								
1. Build	an underst	tandin	ng of the funda	mental	l concepts of o	compute	r networkin	g.		
2. Famili	arize the s	studen	nt with the basi	c taxo	nomy and terr	minolog	y of the con	nputer		
networki	ng area.	_		_						
3. Introd	uce the stu	ıdent	to advanced ne	etwork	ing concepts,	preparii	ng the stude	nt for		
entry Ad	vanced co	ourses	in computer n	etwork	king.	C .				
4. Allow	the stude	nt to g	gain expertise i	n som	e specific area	as of net	working suc	ch as the		
design ai	nd maintei	nance	of individual i	networ	KS.					
C	4	_								
Linon	outcomes:	omnlo	tion of lab Co	1100 01	tudant will ba	abla to				
Upon su	andontly i	under	tond basis con	urse, si	notwork took	able to:				
2 Under	stand and	avnla	in Data Comm	upicat	ions System	and its c	omponente			
3 Identif	Stand and $\overline{\mathbf{v}}$ the diff	erent f	types of netwo	rk ton	alogies and p	rotocols	omponents.			
4 Enum	y the unit erate the l	avers	of the OSI mo	del ano	1 TCP/IP Ext	nlain the	function(s)	ofeach		
laver		uyers -	of the obt mo	uer un			i une non (5)	or each		
5. Identif	the diffe	erent (	types of netwo	rk dev	ices and their	function	ns within a 1	network		
	<u> </u>		<u>.</u>							
			LAF	B COU	<b>RSE CONT</b>	ENT				
Comput	er Netwo	rk La	b		Semester:			VI	II	
Teachin	g Scheme	:			Examinatio	n schen	ne:			
Practica	l:		2 hours/week	2	End Semest	ter Exai	n (ESE): (F	PR)	25 marks	
					Internal Co	ntinuou	is Assessme	ent	25 marks	
					(ICA):					
		(No	ote: Minimum	EIGH	T experiments	s to be p	erformed)			
1. Study of different types of Network cables and Practically implement										
2. The cross-wired cable and straight through cable using clamping tool.										
3. Study of Network Devices in Detail.										
4. Study of network IP.										
5. Conr	lect the co	mpute	ers in Local Ar	ea Net	twork.					
5. Connect the computers in Local Area Network.										

Syllabus for Final Year Engineering (Electronics and Telecommunication Engineering) w.e.f. 2021 – 22 Page **65** of **69** 

- 6. Performing an Initial Switch Configuration
- 7. Configuration of Router and Study of Routing between LANs.
- 8. Implementing an IP Addressing Scheme
- 9. Observing Static and Dynamic Routing
- 10. Configuring Ethernet and Serial Interfaces
- 11. Performance of CDMA
- 12. Three node point to point network
- 13. Transmission of Ping messages
- 14. Implementation of LAN using Multiuser Windows operation system.

### **Text Books:**

1. Andrew S Tanebaum - Computer Networks, 4th Ed. PHI/ Pearson education.

2. Behrouz A Forouzan - Data Communication and Networks, 3rd Ed. TMH.

### **Reference Books:**

- 1. Irvine Olifer Computer Networks: Principles, Technology and Protocols, Wiley India.
- 2. William Stalling Data and Computer communications, 7th Ed. PHI
- 3. S. Keshav, "An Engineering Approach to Computer Networking", Pearson Edu.

### **Guide lines for ICA:**

Students must submit ICA in the form of journal. Each assignment should be well documented. Faculty in charge will assess the assignments continuously and grade or mark each assignment on completion date declared for each assignments.

### **Guidelines for ESE:**

ESE will be based on the Laboratory assignments submitted by the students in the form of journal. In the ESE (PR), the students may be asked to perform the practical assignment with minor modification.

Evaluation will be based on the paper work of algorithm, understanding of the logic and the syntax, quality of the program, execution of the program, type of input and output for the program.

Project											
~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~		LAB CO	URSE	OUTI			~				
Course Title:	Proje	ct			Short	PROJ	Course	5			
Course description.					1 itle:		Code:				
Course description:		notion of stud		da tha	Dechalo	n of Engin		ana Tha			
project represents the	ortunit	to apply and	y loward	us ine	al loornad	r of Engli	ieering de	gree. The			
project offers the opp	ortunity	focilitating stu	dont loo	rning	in toohni	unrougno	ut the prog	gram. The			
presentation spheres	iny on i	facilitating stu	uent lea	unnig	in techin	ical, proje	ct manage	ment and			
I abaratary Hours/wook No of Total hours Somester and its											
Laboratory	1	liouis/week	wooks		I Utal III	Jul S	Semeste	I creans			
		6	14	l	5	84		3			
End Somester Exem	(FSF)	Dattorn	17	- 		-		5			
End Semester Exam		Pattern:		Ora							
Frerequisite course(s	s):										
Course objectives:											
1 To understand the	basic c	oncents & brog	ad princi	inlas a	of projects	1					
1. To understand the		of achieving pa	rfection	in pro	piect impl	o. Amontation	n & compl	ation			
2. To understand the	value	concepts to se	olve pro	hlem	s with tes	mwork a	nd multidi	cuoli. sciplipary			
approach	netical	concepts to s	one pre	Juicin	s with tee	unwork a	iu munuu	scipinary			
4 To demonstrate r	rofessi	onalism with	ethics.	prese	nt effectiv	ve commi	inication s	skills and			
relate engineering	issues	to broader soci	etal con	text.		ve comme	,	Juins and			
Course outcomes:											
Upon successful com	oletion	of lab Course,	student	will b	e able to:						
1. Demonstrate a sou	ind tech	nical knowled	ge of the	eir sel	ected proj	ect topic.					
2. Undertake probler	n identi	ification, formu	ilation a	nd sol	lution.	1					
3. Design engineerin	g soluti	ions to complex	x proble	ms uti	ilizing a s	ystems app	oroach.				
4. Conduct an engine	eering p	roject	_				-				
5. Demonstrate the k	nowled	lge, skills and a	attitudes	ofap	profession	al enginee	r.				
		LAB CO	URSE (	CONT	TENT						
Project			i	Semester: VIII			Ι				
<b>Teaching Scheme:</b>				Exam	nination s	cheme:					
Practical:		6 hours/v	veek	End s	semester e	exam (ESI	E): (OR)	50			
						× ×	, , ,	marks			
				Inter	nal Conti	nuous Ass	sessment	50			
				(ICA)	):			marks			
In continuation with	Project	(Stage - I) at	Semest	er – V	VII, by the	e end of S	Semester –	VIII, the			
students should comp	olete im	plementation of	of ideas	as fo	rmulated	in Project	(Stage –	I). It may			
involve fabrication /	coding,	experimentati	on, data	anal	ysis withi	n realistic	constraint	ts such as			
economic, environme	economic, environmental, social, ethical, health and safety, manufacturability, and sustainability.										

It may also include testing, results and report writing. Each student group should submit complete project report at the end of Semester-VIII in the form of Hard bound. Assessment for the project shall also include presentation by the students.

Each student group is required to maintain separate log book for documenting various activities of the project.

Suggestive outline for the complete project report is as follows.

# Abstract

# Chapter 1. Introduction

- Background / Literature Survey
- Motivation
- Problem Definition
- Scope
- Objective
- Selection of Life cycle Model for Development
- Organization of Report
- Summary

### **Chapter 2. Project Planning and Management**

- Feasibility Study
- Risk Analysis
- Project Scheduling
- Effort Allocation
- Cost Estimation
- Summary

# **Chapter 3. Analysis**

- Requirement Collection and Identification
- H/w and S/w Requirement (Data, Functional and Behavioral)
- Functional and non-Functional Requirements
- Software Requirement's Specification (SRS)
- Summary

# Chapter 4. Design

- System Arch
- Circuit Diagram and Data Flow Diagram
- UML Diagrams (Use case, Class, Sequence, Component, Deployment, State chart, Activity diagram etc.)
- Summary

### **Chapter 5. Coding/Implementation**

• Algorithm/Steps

- Software and Hardware for development in detail
- Modules in Project

# **Chapter 6. Testing**

- Black Box/White Box testing
- Manual/Automated Testing
- Test Cases Identification and Execution (Test case ID, Input, Output, Expected Output, Actual Output, Result (Pass/Fail) etc.)

### **Chapter 7. Results and Discussion**

**Chapter 8. Conclusion & Future Work** 

**Bibliography** 

Index

### Appendix

### **Guide lines for ICA:**

The Internal Continuous Assessment (ICA) for project shall be based on continuous evaluation of students' performance, active participation, knowledge / skill acquired throughout semester and presentation by the students. The assessment shall be done jointly by the guide and departmental committee. A three-member departmental committee including guide, appointed by Head of the department, shall be constituted for the assessment. The assessment for Project in Semester – VIII shall be as per the guidelines given in Table – B.

_	Table – B										
		As	ssessment by (	Guide		Assessment by Departmental					
						Committee					
Sr	Nam	Attendan	Implement	Resu	Rep	Depth of	Presenta	Demonstra	Tot		
	e of	ce /	ation	lts	ort	Understan	tion	tion	al		
Ν	the	Participa				ding					
0.	Stud	tion									
	ent										
	Marks	5	5	5	5	10	10	10	50		

### **Guidelines for ESE:**

In End Semester Examination (ESE), the student may be asked for presentation / demonstration and questions on Project. Evaluation will be based on answers given by students in oral examination.